Feynmann - Feynmann 6a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А что можно сказать о потерях энергии, когда генератор подключен к произвольному импедансу z? (Под «потерями» мы, конечно, понимаем превращение электрической энергии в теп­ловую.) Всякий импеданс z может быть разбит на действитель­ную и мнимую части, т. е.

z = R + iX, (22.24)

где R и X — числа действительные. С точки зрения эквивалент­ных схем можно сказать, что всякий импеданс эквивалентен сопротивлению, последовательно соединенному с чисто мни­мым импедансом, называемым реактансом

(фиг. 22.17).

Мы уже видели раньше, что любая цепь, содержащая только L и C, обладает импедансом, выражаемым чисто мнимым числом. А раз в любом из L и С в среднем никаких потерь не бывает, то и в чистом реактансе, в котором имеются только L и С, по­терь энергии не бывает. Можно показать, что это должно быть верно для всякого реактанса.

Если генератор с э. д. с. e подсоединен к импедансу z (см. фиг. 22.17), то его

э. д. с. должна быть связана с током I из генератора соотношением

e = I(R + iX). (22.25)

Чтобы найти, с какой средней скоростью подводится энергия, нужно усреднить произведение eI. Но теперь следует быть ос­торожным. Оперируя с такими произведениями, надо иметь дело только с действительными величинами e(t) и I(t). (Дейст­вительные части комплексных функций изображают настоящие физические величины только тогда, когда уравнения линейны; сейчас же речь идет о произведении, а это, несомненно, вещь нелинейная.)

Пусть мы начали отсчитывать t так, что амплитуда I' оказа­лась действительным числом, скажем I 0; тогда истинное изме­нение I во времени дается формулой

I=I 0coswt.

.

Входящая в уравнение (22.25) э.д.с.— это действительная часть

или 2226 Два слагаемых в 2226 представляют падение напряжений на R и X - фото 51

или 2226 Два слагаемых в 2226 представляют падение напряжений на R и X - фото 52

или

(22.26)

Два слагаемых в (22.26) представляют падение напряжений на R и X (см. фиг. 22.17). Мы видим, что падение напряжения на сопротивлении находится в фазе с током, тогда как падение напряжения на чисто реактивной части находится с током в противофазе.

Средняя скорость потерь энергии <���Р> ср, текущей от гене­ратора, есть интеграл от произведения eI за один цикл, делен­ный на период Т; иными словами,

Первый интеграл равен 1 2I 2 0R а второй равен нулю Стало быть средняя - фото 53

Первый интеграл равен 1/ 2I 2 0R, а второй равен нулю. Стало быть, средняя потеря энергии в импедансе z R + iX зависит лишь от действительной части z и равна I 2 0 R /2. Это согласуется с нашим прежним выводом о потерях энергии в сопротивле­нии. В реактивной части потерь энергии не бывает.

§ 6. Лестничная сеть

А теперь мы рассмотрим интереснейшую цепь, которую можно выражать через параллельные и последовательные сочетания. Начнем с цепи, изображенной на фиг. 22.18, а. Сразу видно, что импеданс между зажимами а и b просто равен z 1+z 2. Возьмем теперь цепь потруднее (фиг. 22.18, б). Ее можно проанализиро­вать с помощью правил Кирхгофа, но нетрудно обойтись и последовательными и параллельными комбинациями. Два импе­данса на правом конце можно заменить одним z 3=z 1+z 2(см. фиг. 22.18, в). Тогда два импеданса z 2и z 3можно заме­нить их эквивалентным параллельным импедансом z 4(фиг. 22.18, г). И наконец, z 1 и z 4эквивалентны одному импедан­су z 5(фиг. 22.18, д).

А теперь можно поставить забавный вопрос: что произой­дет, если к цепи, показанной на фиг. 22.18, б, бесконечно под­ключать все новые и новые звенья (штриховая линия на фиг. 22.19, а)? Можно ли решить задачу о такой бесконечной це­пи? Представьте, это совсем не трудно. Прежде всего мы замечаем, что такая бесконечная цепь не меняется, если новое звено под­ключить к «переднему» концу. Ведь если к бесконечной цепи добавляется одно звено, она остается все той же бесконечной цепью.

Фиг 2218 Эффективный импеданс лестницы Пусть мы обозначили импеданс - фото 54

Фиг. 22.18. Эффективный импеданс лестницы.

Пусть мы обозначили импеданс между зажимами а и b бесконечной цепи через z 0 - фото 55

Пусть мы обозначили импеданс между зажимами а и b бесконечной цепи через z 0; тогда импеданс всего того, что справа от зажимов с и d , тоже равен z 0. Поэтому если смотреть с перед­него конца, то вся цепь представляется в виде, показанном на фиг. 22.19, б. Заменяя два параллельных импеданса z 2и z 0одним и складывая его с z 1?сразу же получаем импеданс всего сочетания

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6a»

Представляем Вашему вниманию похожие книги на «Feynmann 6a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6a»

Обсуждение, отзывы о книге «Feynmann 6a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x