А что можно сказать о потерях энергии, когда генератор подключен к произвольному импедансу z? (Под «потерями» мы, конечно, понимаем превращение электрической энергии в тепловую.) Всякий импеданс z может быть разбит на действительную и мнимую части, т. е.
z = R + iX, (22.24)
где R и X — числа действительные. С точки зрения эквивалентных схем можно сказать, что всякий импеданс эквивалентен сопротивлению, последовательно соединенному с чисто мнимым импедансом, называемым реактансом
(фиг. 22.17).
Мы уже видели раньше, что любая цепь, содержащая только L и C, обладает импедансом, выражаемым чисто мнимым числом. А раз в любом из L и С в среднем никаких потерь не бывает, то и в чистом реактансе, в котором имеются только L и С, потерь энергии не бывает. Можно показать, что это должно быть верно для всякого реактанса.
Если генератор с э. д. с. e подсоединен к импедансу z (см. фиг. 22.17), то его
э. д. с. должна быть связана с током I из генератора соотношением
e = I(R + iX). (22.25)
Чтобы найти, с какой средней скоростью подводится энергия, нужно усреднить произведение eI. Но теперь следует быть осторожным. Оперируя с такими произведениями, надо иметь дело только с действительными величинами e(t) и I(t). (Действительные части комплексных функций изображают настоящие физические величины только тогда, когда уравнения линейны; сейчас же речь идет о произведении, а это, несомненно, вещь нелинейная.)
Пусть мы начали отсчитывать t так, что амплитуда I' оказалась действительным числом, скажем I 0; тогда истинное изменение I во времени дается формулой
I=I 0coswt.
.
Входящая в уравнение (22.25) э.д.с.— это действительная часть


или
(22.26)
Два слагаемых в (22.26) представляют падение напряжений на R и X (см. фиг. 22.17). Мы видим, что падение напряжения на сопротивлении находится в фазе с током, тогда как падение напряжения на чисто реактивной части находится с током в противофазе.
Средняя скорость потерь энергии <���Р> ср, текущей от генератора, есть интеграл от произведения eI за один цикл, деленный на период Т; иными словами,

Первый интеграл равен 1/ 2I 2 0R, а второй равен нулю. Стало быть, средняя потеря энергии в импедансе z — R + iX зависит лишь от действительной части z и равна I 2 0 R /2. Это согласуется с нашим прежним выводом о потерях энергии в сопротивлении. В реактивной части потерь энергии не бывает.
§ 6. Лестничная сеть
А теперь мы рассмотрим интереснейшую цепь, которую можно выражать через параллельные и последовательные сочетания. Начнем с цепи, изображенной на фиг. 22.18, а. Сразу видно, что импеданс между зажимами а и b просто равен z 1+z 2. Возьмем теперь цепь потруднее (фиг. 22.18, б). Ее можно проанализировать с помощью правил Кирхгофа, но нетрудно обойтись и последовательными и параллельными комбинациями. Два импеданса на правом конце можно заменить одним z 3=z 1+z 2(см. фиг. 22.18, в). Тогда два импеданса z 2и z 3можно заменить их эквивалентным параллельным импедансом z 4(фиг. 22.18, г). И наконец, z 1 и z 4эквивалентны одному импедансу z 5(фиг. 22.18, д).
А теперь можно поставить забавный вопрос: что произойдет, если к цепи, показанной на фиг. 22.18, б, бесконечно подключать все новые и новые звенья (штриховая линия на фиг. 22.19, а)? Можно ли решить задачу о такой бесконечной цепи? Представьте, это совсем не трудно. Прежде всего мы замечаем, что такая бесконечная цепь не меняется, если новое звено подключить к «переднему» концу. Ведь если к бесконечной цепи добавляется одно звено, она остается все той же бесконечной цепью.

Фиг. 22.18. Эффективный импеданс лестницы.

Пусть мы обозначили импеданс между зажимами а и b бесконечной цепи через z 0; тогда импеданс всего того, что справа от зажимов с и d , тоже равен z 0. Поэтому если смотреть с переднего конца, то вся цепь представляется в виде, показанном на фиг. 22.19, б. Заменяя два параллельных импеданса z 2и z 0одним и складывая его с z 1?сразу же получаем импеданс всего сочетания
Читать дальше