(14.13)
для электростатики.

Наше уравнение (14.12) для векторного потенциала станет еще более похожим на уравнение для j, если переписать СX(СX А), используя векторное тождество [см. уравнение (2.58) стр. 44]
(14.14)

Поскольку мы выбрали С·А=0 (и теперь вы видите, почему), уравнение (14.12) приобретает вид
(14.15)

Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.
Это векторное уравнение, конечно, распадается на три уравнения


и каждое из этих уравнений математически идентично уравнению
(14.17)
Все, что мы узнали о нахождении потенциала для известного r, можно использовать для нахождения каждой компоненты А, когда известно j!

В гл. 4 мы видели, что общее решение уравнения электростатики (14.17) имеет вид

Тогда мы немедленно получаем общее решение для А x :
(14.18)
и аналогично для А у и A z . (Фиг. 14.2 напоминает вам о принятых нами обозначениях для r 12и dV 2 .) Мы можем объединить все три решения в векторной форме:

(14.19)
(Вы можете при желании проверить прямым дифференцированием компонент, что этот интеграл удовлетворяет С·А=0, поскольку С·j=0, а последнее, как мы видели, должно выполняться для постоянных токов.)
Мы имеем, таким образом, общий метод вычисления магнитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал j, который был бы создан плотностью зарядов р, равной j x / c 2 , и аналогично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компонента А не связана таким же образом с «радиальной» компонентой j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую компоненту А, решая три воображаемые электростатические задачи для распределений заряда r 1=j x/с 2, r 2=j у/с 2и r 3=j z/с 2. Затем мы находим В, вычислив разные производные от А, входящие в ухА. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.
§ 3. Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, пользуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоянный ток I. В отличие от заряда в проводнике в случае электростатики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту. По величине она равна

(14.20)
внутри провода и нулю вне его.
Поскольку j х и j yоба равны нулю, то сразу же получим
А х = 0, А у = 0.
Чтобы получить А г , можно использовать наше решение для электростатического потенциала j от провода с однородной плотностью заряда r=/ г/с 2.

Фиг. 14.3. Длинный цилиндрический провод с однородной плотностью тока j , направленный вдоль оси z .

Для точек вне бесконечного заряженного цилиндра электростатический потенциал равен
Читать дальше