Для кристаллов, не обладающих постоянным моментом, можно развить теорию диэлектрической проницаемости, куда включается электронная поляризуемость атомов. Делается это почти так же, как для жидкостей. Некоторые кристаллы имеют внутренние моменты, и вращение их также вносит вклад в x. В ионных кристаллах, таких, как NaCl, возникает также ионная поляризуемость. Кристалл состоит из положительных и отрицательных ионов, расположенных в шахматном порядке, и в электрическом поле положительные ионы тянутся в одну сторону, а отрицательные — в другую; возникает результирующее смещение положительных и отрицательных зарядов, а следовательно, и объемная поляризация. Мы могли бы оценить величину ионной поляризуемости, зная жесткость кристаллов соли, но мы не будем сейчас останавливаться на этом вопросе.

Фиг. 11.8. Сложная кристаллическая решетка может иметь постоянную внутреннюю поляризацию Р.
§ 7. Сегиетоэлектричество; титанат бария
Мы опишем здесь особый класс кристаллов, которые, можно сказать, почти случайно обладают «встроенным» постоянным электрическим моментом. Ситуация здесь настолько критична, что, если слегка увеличить температуру выше некоторой, кристалл этого класса совсем потеряет постоянный момент. С другой стороны, если структура кристалла близка к кубической, так что электрические моменты могут располагаться в разных направлениях, можно обнаружить большие изменения полного момента при изменении приложенного электрического поля. Все моменты перевертываются в направлении поля, и мы получаем большой эффект. Вещества, обладающие такого рода постоянным моментом, называются сегнетоэлектриками. Мы хотели бы объяснить механизм сегнетоэлектричества на частном примере какого-нибудь сегнетоэлектрического материала. Сегнетоэлектрические свойства могут возникать несколькими путями; однако мы разберем только один из них на примере таинственного титаната бария (BaТiO 3). Это вещество обладает кристаллической решеткой, основная ячейка которого изображена на фиг. 11.9. Оказывается, что выше некоторой температуры (а именно 118°С) титанат бария — обычный диэлектрик с огромной диэлектрической проницаемостью, а ниже этой температуры он неожиданно приобретает постоянный момент.
При вычислении поляризации твердых тел мы должны сначала найти локальные поля в каждой элементарной ячейке. Причем для этого нужно ввести поля самой поляризации, как это делалось в случае жидкости. Но кристалл — не однородная жидкость, так что мы не можем взять в качестве локального поля то, что мы нашли в сферической дыре. Если мы сделаем это для кристалла, то окажется, что множитель 1/ 3в уравнении (11.24) слегка изменится, но ненамного. (Для простого кубического кристалла он равен в точности 1/ 3.) Поэтому предположим в нашем предварительном обсуждении, что этот множитель для BaTi0 3действительно равен 1/ 3.
Далее, когда мы писали уравнение (11.28), вам, наверное, было интересно знать, что случится, если N a станет больше 3. На первый взгляд величина x должна бы стать отрицательной. Но такого наверняка не может быть. Посмотрим, что произойдет, если в каком-нибудь определенном кристалле постепенно увеличивать значение a.

Фиг. 11.9. Элементарная ячейка ВаТ iO 3 .
Атомы в действительности заполняют большую часть пространства; показаны только положения их центров.
По мере роста a растет и поляризация, создавая большее локальное поле. Но увеличившееся локальное поле заполяризует атом еще больше, дополнительно усиливая само локальное поле. Если атомы достаточно «податливы», процесс продолжается; возникает своего рода обратная связь, приводящая к безудержному росту поляризации (если предположить, что поляризация каждого атома увеличивается пропорционально полю). Условие «разгона» возникает при N a = 3. Поляризация, конечно, не обращается в бесконечность, потому что при сильных полях пропорциональность между индуцированным моментом и электрическим полем нарушается, так что наши формулы становятся неправильными. А получается то, что в решетку, оказывается, «встроена» большая внутренняя самопроизвольная поляризация.
Читать дальше