Feynmann - Feynmann 5

Здесь есть возможность читать онлайн «Feynmann - Feynmann 5» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 5: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 5»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 5 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 5», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поля бывают также векторными Идея их очень проста В каждой точке пространства - фото 22

Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, кото­рый является функцией ее положения (фиг. 2.2). Другой при­мер — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направ­лениях. Поток тепла — это величина, имеющая направление;

Фиг . 2.2. Скорости атомов во вращающемся теле — пример век­торного поля.

обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.

Feynmann 5 - изображение 23

Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, про­ходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикуляр­ный к направлению потока. Вектор указывает направление потока (фиг. 2.3). В буквенных обозначениях: если DJ — теп­ловая энергия, протекающая за единицу времени сквозь эле­мент поверхности Dа, то

(2.9)

где е f единичный вектор направления потока Вектор h можно определить и иначе - фото 24

где е f — единичный вектор направления потока Вектор h можно определить и иначе — через его компонен­ты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Аa 2под некото­рым углом к поверхности Da t, которая перпендикулярна к по­току. Единичный вектор n перпендикулярен к поверхности

Фиг. 2.3. Тепловой потоквекторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент по­верхности, ориентированный попе­рек потока, деленную на площадь элемента поверхности.

Фиг 24 Тепловые потоки сквозь Aа 2и сквозь Aa 1 одинаковы Aа 2 Угол q - фото 25

Фиг. 2.4. Тепловые потоки сквозь Aа 2и сквозь Aa 1 одинаковы.

Aа 2 Угол q между nи hравен углу между поверхностями так как h нормаль к Da - фото 26

Aа 2. Угол q между nи hравен углу между поверхностями (так как h— нормаль к Da 1). Чему теперь равен поток тепла че­рез Dа 2 на единицу площади? Потоки сквозь Dа 2и Dа 1равны между собой, отличаются только площади. Действительно, Dа 1= Dа 2cosq. Поток тепла через Dа 2равен

(2.10)

Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h·n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу по­верхности Dа 2, равна h·n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.

§ 3. Производные полей — градиент

Когда поля меняются со временем, то их изменение можно описать, задав их производные по t . Мы хотим также описать и их изменение в пространстве, потому что мы интересуемся связью, скажем, между температурой в некоторой точке и в точке с ней рядом. Как же задать производную температуры по координате? Дифференцировать температуру по х ? Или по у, или по z?

Осмысленные физические законы не зависят от ориентации системы координат. Поэтому их нужно писать так, чтобы по обе стороны знака равенства стояли скаляры или векторы. Что же такое производная скалярного поля, скажем, дТ/дх? Скаляр ли это, или вектор, или еще что? Это, как легко понять, ни то ни другое, потому что если взять другую ось х, то дТ/дх изменится. Но заметьте: у нас есть три возможных производ­ных: дТ/дх, дТ/ду и dT / dz . Три сорта производных, а ведь мы знаем, что нужно как раз три числа, чтобы образовать вектор.

Может быть эти три производные и представляют собой компоненты вектора - фото 27

Может быть, эти три производные и представляют собой ком­поненты вектора:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 5»

Представляем Вашему вниманию похожие книги на «Feynmann 5» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 5»

Обсуждение, отзывы о книге «Feynmann 5» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x