Feynmann - Feynmann 3

Здесь есть возможность читать онлайн «Feynmann - Feynmann 3» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 3 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 271 Треугольник высота которого h меньше основания d a гипотенуза s - фото 16

Фиг. 27.1. Треугольник, высота, которого h меньше основания d , a гипотенуза s больше основания.

Оказалось, что наиболее современная и абстрактная теория геометрической оптики, разработанная Гамильтоном, имеет весьма важные приложения в механике, причем в механике она имеет даже большее значение, чем в оптике, поэтому пусть ею занимается курс аналитической механики. А пока, понимая, что геометрическая оптика интересна только сама по себе, мы перейдем к изучению элементарных свойств оптических систем на основе принципов, изложенных в предыдущей главе.

Для дальнейшего нам понадобится одна геометрическая формула: пусть дан треугольник, высота которого h мала, а основание d велико; тогда гипотенуза s (фиг. 27.1) больше осно­вания (нам нужно это знать, чтобы вычислить разность времен на двух различных путях света). Насколько гипотенуза больше основания? Мы можем найти разность D =s-d несколькими спо­собами. Например, s 2-d 2=h 2или (s-d) (s+d)=h 2. Но s-d=D, a s+d~2s. Таким образом,

Feynmann 3 - изображение 17(27.1)

Вот и все, что нам нужно знать из геометрии для изучения изоб­ражений, получаемых с помощью кривых поверхностей!

§ 2. Фокусное расстояние для сферической поверхности

Рассмотрим сначала простейший пример преломляющей поверхности, разделяющей две среды с разными показателями преломления (фиг. 27.2). Случай произвольных показателей

Фиг 272 Фокусировка на преломляющей поверхности пусть разберет читатель - фото 18

Фиг. 27.2. Фокусировка на преломляющей поверхности.

пусть разберет читатель самостоятельно; нам важно рассказать об идее, задача же достаточно проста и ее можно решить в лю­бом частном случае. Итак, пусть слева скорость света равна 1, а справа 1/n, где n — показатель преломления. Свет в стекле идет медленнее в n раз.

Теперь представим себе точку О на расстоянии s от лицевой поверхности стекла и другую точку О' на расстоянии s' внутри стекла и попытаемся выбрать кривую поверхность так, чтобы каждый луч, вышедший из О и попавший на поверхность в Р, приходил в точку О'. Для этого нужно придать поверхности такую форму, чтобы сумма времени прохождения света на пути от О к Р (т. е. расстояние ОР, деленное на скорость света, равную единице) плюс n-О'Р, т.е. время на пути от Р к О', было по­стоянной величиной, не зависящей от положения точки Р. Это условие дает уравнение для определения поверхности. В ре­зультате получается весьма сложная поверхность четвертого порядка (читатель может вычислить ее для собственного удоволь­ствия с помощью аналитической геометрии). Проще рассмотреть специальный случай s® Ґ, когда кривая получается второго порядка и ее легче определить. Интересно сравнить эту кри­вую с кривой для фокусирующего зеркала (когда свет приходил из бесконечности), которая, как вы помните, оказалась параболой.

Итак, нужную поверхность сделать нелегко; чтобы сфокуси­ровать свет от одной точке в другую, нужна довольно сложная поверхность. Практически такие сложные поверхности даже не пытаются создать, а пользуются компромиссным решением. Мы не будем собирать все лучи в фокус, а соберем только лучи, достаточно близкие к оси 00'. Раз идеальная форма поверхности столь сложна, возьмем вместо нее сферическую поверхность, которая имеет нужную кривизну у самой оси, и пусть далекие лучи отклоняются от оси, если они того хотят. Сферу изготовить намного проще, чем другие поверхности, поэтому выберем сферу и рассмотрим поведение лучей, падающих на сферическую по­верхность. Будем требовать точной фокусировки только для тех лучей, которые проходят вблизи от оси. Иногда эти лучи называ­ют параксиальными, а наша задача — найти условия фокуси­ровки параксиальных лучей. Позже мы обсудим ошибки, свя­занные с отклонением лучей от оси.

Итак, считая, что Р близко к оси, опустим перпендикуляр PQ длиной h. Если бы наша поверхность была плоскостью, проходящей через Р, то время, затрачиваемое на пути от О к Р, превышало бы время на пути от О к Q, а время на пути от Р к О' превышало бы время от Q к О'. Поверхность стекла должна быть кривой, потому что только в этом случае весь излишек времени компенсируется задержкой при прохождении пути от V к Q! Далее, излишек времени на пути ОР есть h 2/2s, а излишек времени на отрезке О'Р есть nh 2/2s'. Это лишнее время, которое должно компенсироваться временем на пути VQ, накапливается на пути в среде, а не в вакууме. Другими словами, время на пути VQ в n раз больше соответствующего времени в вакууме, а поэтому лишнее время на этом отрезке есть (n-l)VQ. Ну, а какова длина VQ? Если С есть центр сферы с радиусом R, то с помощью уже знакомой нам формулы выводим, что длина VQ есть h 2/2R. В результате мы получаем закон, 272 который связывает длины s и s и определяет радиус кривизны R искомой - фото 19(27.2)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 3»

Представляем Вашему вниманию похожие книги на «Feynmann 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 3»

Обсуждение, отзывы о книге «Feynmann 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x