Возвращаясь к уравнению (30.19), находим Е адля больших z:
(31.26)

(напомним, что h=NDz). Подставляя (31.26) в левую часть равенства (31.25), получаем

Ho E s(в точке z) равно E s(в точке атома) с запаздыванием на z/c. Поскольку среднее значение не зависит от времени, оно не изменится, если временной аргумент запаздывает на z/c, т. е. оно равно E s(в точке атома)·v, но точно такое же среднее значение стоит и в правой части (31.25). Обе части (31.25) будут равны, если выполняется соотношение
(31.27)
Таким образом, если справедлив закон сохранения энергии, то количество энергии электрической волны, приходящееся на единичную площадку в единицу времени (то, что мы называем интенсивностью), должно быть равно e 0сЕ 2. Обозначив интенсивность через S, получим

(31.28)
где черта означает среднее по времени. Из нашей теории показателя преломления получился замечательный результат!
§ 6. Дифракция света на непрозрачном экране
Теперь наступил удобный момент, чтобы применить методы настоящей главы к решению задачи другого рода. В гл. 30 мы говорили, что распределение интенсивности света — дифракционную картину, возникающую при прохождении света через отверстия в непрозрачном экране,— можно найти, равномерно распределив источники (осцилляторы) по площади отверстий. Другими словами, дифрагированная волна выглядит так, как будто источником служит дырка в экране. Мы должны выяснить причину этого явления, ведь на самом деле именно в дырке нет источников, нет никаких зарядов, движущихся с ускорением.
Ответим сначала на вопрос: что такое непрозрачный экран? Пусть между источником S и наблюдателем Р находится совершенно непрозрачный экран, как показано на фиг. 31.6, а. Раз экран «непрозрачный», поле в точке Р отсутствует. Почему? Согласно общим принципам, поле в точке Р равно полю E s , взятому с некоторым запаздыванием, плюс поле всех остальных зарядов. Но, как было показано, поле E sприводит заряды экрана в движение, а они в свою очередь создают новое поле, и, если экран непрозрачный, это поле зарядов должно в точности погасить поле E sс задней стенки экрана. Тут вы можете возразить: «Каким чудом они в точности погасятся! А что, если погашение неполное?» Если бы поля гасились не полностью (напомним, что экран имеет некоторую толщину), поле в экране вблизи от задней стенки было бы отлично от нуля.

Фиг. 31.6. Дифракция на непрозрачном экране.
Но тогда оно приводило бы в движение другие электроны экрана, создавая тем самым новое поле, стремящееся скомпенсировать первоначальное поле. Если экран толстый, в нем имеется достаточно много возможностей, чтобы свести остаточное поле к нулю. Пользуясь нашей терминологией, можно сказать, что непрозрачный экран обладает большим и чисто мнимым показателем преломления и поэтому волна в нем экспоненциально затухает. Вам, наверное, известно, что тонкие слои большинства непрозрачных материалов, даже золота, прозрачны.
Посмотрим теперь, какая возникнет картина, если взять такой непрозрачный экран с отверстием, какой изображен на фиг. 31.6, б. Каким будет поле в точке P? Поле в точке Р слагается из двух частей — поля источника S и поля экрана, т. е. поля от движения зарядов в экране. Движение зарядов в экране, по-видимому, очень сложное, но создаваемое ими поле находится довольно просто.

Возьмем тот же самый экран, но закроем отверстия крышками, как показано на фиг. 31.6, в. Пусть крышки сделаны из того же материала, что и экран. Заметьте, что крышки поставлены в тех местах, где на фиг. 31.6, б показаны отверстия. Давайте вычислим теперь поле в точке Р. Поле в точке Р в случае, показанном на фиг. 31.6, в, разумеется, равно нулю, но, с другой стороны, оно также равно полю источника плюс поле электронов экрана и крышек. Мы можем написать следующее равенство:

Читать дальше