
Фиг. 28.4. Иллюстрация векторного характера сложения полей.
Полное электрическое поле представится векторной суммой двух сигналов, находящихся в одной и той же фазе; оба сигнала одновременно проходят и через максимум и через нуль. Суммарное поле должно быть равно сигналу R, повернутому на 45°. Максимальный звук будет получен, если повернуть детектор D на 45°, а не в вертикальном направлении. При повороте на прямой угол по отношению к указанному направлению звуковой сигнал, как легко проверить, должен быть равен нулю. И действительно, именно это и наблюдается!
А как быть с запаздыванием? Как показать, что сигнал действительно запаздывает? Конечно, прибегнув к большому числу сложных устройств, можно измерить время прибытия сигнала, но есть другой, очень простой способ. Обратимся снова к фиг. 28.3 и предположим, что S1 и S 2находятся в одной фазе. Оба источника колеблются одинаково и создают в точке 1 равные поля. Но вот мы перешли в точку 2, которая находится ближе к S 2,, чем к S 1. Тогда, поскольку запаздывание определяется величиной r/c, при разных запаздываниях сигналы будут приходить с разными фазами. Следовательно, должна существовать такая точка, для которой расстояния от D до S 1и S 2различаются на такую величину D, когда сигналы будут погашаться.
В этом случае D должна быть равна расстоянию, проходимому светом за половину периода колебаний генератора. Сдвинемся еще дальше и найдем точку, где разность расстояний соответствует полному периоду колебаний, т.е. сигнал от первой антенны достигает точки 3 с запаздыванием по сравнению с сигналом от второй антенны, и это запаздывание в точности равно одному периоду колебаний. Тогда оба электрических поля снова находятся в одной фазе и сигнал в точке 3 опять становится сильным.
На этом закончим описание экспериментальной проверки важнейших следствий формулы (28.6). Мы, конечно, не касались вопроса об электрических полях, спадающих по закону 1/r, и не учитывали, что магнитное поле сопутствует электрическому при распространении сигнала. Для этого требуется довольно сложная техника вычислений, и вряд ли это что-либо добавит к нашему пониманию вопроса. Во всяком случае, мы установили свойства, наиболее важные для последующих приложений, а к другим свойствам электромагнитных волн мы еще вернемся.
Глава 29
§ 1. Электромагнитные волны
§ 2. Энергия излучения
§ 3. Синусоидальные волны
§ 4. Два дипольных излучателя
§ 5. Математическое описание интерференции
ИНТЕРФЕРЕНЦИЯ
§ 1. Электромагнитные волны
В этой главе мы будем обсуждать те же вопросы, что и в предыдущей, но с большими математическими подробностями. Качественно мы уже показали, что поле излучения двух источников имеет максимумы и минимумы, и теперь наша задача — дать математическое, а не просто качественное описание поля.
Мы вполне удовлетворительно разобрали физический смысл формулы (28.6), рассмотрим теперь некоторые ее математические черты. Прежде всего поле заряда, движущегося вверх и вниз с малой амплитудой в направлении 0 от оси движения, перпендикулярно лучу зрения и лежит в плоскости ускорения и луча зрения (фиг. 29.1). Обозначим расстояние через r, тогда в момент времени t величина электрического поля равна
(29.1)
где a ( t - r /с) — ускорение в момент времени (t-r /с), или запаздывающее ускорение.
Интересно нарисовать картину распределения поля в разных случаях. Наиболее характерный множитель в формуле (29.1) — это a (t-r/с); чтобы его понять, возьмем простейший случай q = 90° и изобразим поле на графике.

Фиг. 29.1. Напряженность поля Е, создаваемая положительным зарядом с запаздывающим ускорением а'.

Фиг. 29.2. Ускорение некоторого заряда как функция времени.
Раньше мы были заняты вопросом, как ведет себя поле в данной фиксированной точке пространства с течением времени. Теперь посмотрим, как выглядит поле в разных точках пространства в один и тот же момент времени. Иначе говоря, нам нужен «моментальный снимок» поля, из которого будет ясно, каково оно в разных местах. Разумеется, картина распределения поля зависит от ускорения заряда. Зададим характер движения заряда: пусть сначала он покоится, затем внезапно начнет определенным образом ускоряться (как показано на фиг. 29.2) и, наконец, остановится. Затем, чуть позже, измерим поле в разных точках пространства. Мы можем утверждать, что поле будет иметь вид, приведенный на фиг. 29.3. В самом деле, поле в каждой точке определяется ускорением заряда в предыдущий момент времени, причем под словом «предыдущий» понимается r /с секунд назад. Чем дальше точка, тем более ранним моментом времени определяется для нее ускорение. Поэтому кривая на фиг. 29.3 в некотором смысле есть «обращенный» во времени график ускорения; время и расстояние отличаются постоянным множителем c, который часто выбирается равным единице. Этот факт легко заметить и в математической записи a(t-r/с). Ясно, что добавка интервала времени At и вычитание отрезка пути D r=-c D t дают одну и ту же величину a(t-r/с).
Читать дальше