Feynmann - Feynmann 2a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 2a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 2a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 2a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 2a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 2a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Значит, чем тяжелее грузик, тем медленнее пружинка будет ко­лебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожест­че, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не го­ворит об амплитуде колебания. Амплитуду колебания, конеч­но, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Реше­ние x = acos w 0 t соответствует случаю, когда в начальный мо­мент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) — косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cos w 0t—решение, то, войдя в комнату, где качается пружин­ка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заме­нить это решение другим. Следовательно, x = cos w 0 t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойст­вом обладает, например, решение x = acos w 0 ( t - t 1 ), где t 1— какая-то постоянная. Далее, можно разложить

cos(w 0 t + D )=cos w 0 t cos D -sin w 0 t sin D и записать

x = A cos w 0 t + В sin w 0 t ,

где A=acos D и В=- asin D . Каждую из этих форм можно ис­пользовать для записи общего решения (21.2): любое из су­ществующих в мире решений дифференциального уравнения

d 2 x / dt 2 = - w 2 0 x можно записать в виде

x = acos w 0 ( t - t 1 ), (21.6а)

или

x = acos ( w 0 t + D ), (21.6б)

или

х=A cos w 0 t + B sin w 0 t . (21.6в)

Некоторые из встречающихся в (21.6) величин имеют наз­вания: w 0называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифферен­циальным уравнением. Другие величины уравнением не опре­деляются, а зависят от начальных условий. Постоянная а слу­жит мерой максимального отклонения груза и называется ам­плитудой колебания. Постоянную D иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой w 0t+D и говорят, что фаза зависит от времени. Можно сказать, что D — это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным D соответствуют движения с разными фазами. Вот это верно, а называть ли D фазой или нет — уже другой вопрос.

§ 3. Гармоническое движение и движение по окружности

Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изуча­ли механику движения по окружности. Если частица движется по окружности с постоянной скоростью v , то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол q = vt / R (фиг. 21.2).

Фиг 212 Частица движущаяся по кругу с постоянной скоростью Тогда d q - фото 4

Фиг. 21.2. Частица, движу­щаяся по кругу с постоянной скоростью.

Тогда d q / dt = w 0 = v / R . Известно, что ускоре­ние а=v 2/R=w 2 0R и направлено к центру. Координаты движу­щейся точки в заданный момент равны

х = R cosq, y=Rsinq.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 2a»

Представляем Вашему вниманию похожие книги на «Feynmann 2a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 2a»

Обсуждение, отзывы о книге «Feynmann 2a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x