Feynmann - Feynmann 2a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 2a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 2a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 2a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 2a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 2a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Зачастую нас совсем не интересует энергия в каждый дан­ный момент колебания; во многих случаях достаточно знать лишь среднюю величину A 2 (среднее значение квадрата А в те­чение времени, много большего, чем период колебаний). При этих условиях можно усреднить квадрат косинуса и доказать теорему: если А представляется комплексным числом, то сред­нее значение А 2равно 1/ 2 A 2 0 . Здесь А 2 0 это квадрат модуля комплексного числа А. (Квадрат модуля В записывают по-раз­ному;

| В | 2или ВВ *— в виде произведения числа В на комплек­сно сопряженное.) Эта теорема пригодится нам еще много раз.

Итак речь идет об энергии осциллятора на который действует внешняя сила - фото 65

Итак, речь идет об энергии осциллятора, на который дейст­вует внешняя сила. Движение такого осциллятора описывается уравнением

Мы конечно предполагаем что F t пропорциональна cos w t Выясним - фото 66

Мы, конечно, предполагаем, что F ( t ) пропорциональна cos w t . Выясним теперь, много ли приходится этой силе работать. Ра­бота, произведенная силой в 1 сек, т. е. мощность, равна произ­ведению силы на скорость. [Мы знаем, что работа, совершаемая за время dt , равна Fdx , а мощность равна F ( dx / dt ).] Значит,

Как легко проверить простым дифференцированием, первые два члена можно переписать в виде ( d / dt )][ l / 2 m ( dx / dt ) 2 + 1 / 2 m w 2 x 2 ]. Выражение в квадратных скобках — производная по времени суммы двух членов. Это понятно; ведь первый член суммы — кинетическая энергия движения, а второй — потенциальная энергия пружины. Назовем эту величину запасенной энергией, т. е. энергией, накопленной при колебаниях. Давайте усред­ним мощность по многим циклам, когда сила включена уже давно и осциллятор изрядно наколебался. Если пробег длится долго, запасенная энергия не изменяется; производная по вре­мени дает эффект, в среднем равный нулю. Иными словами, если усреднить затраченную за долгое время мощность, то вся энергия поглотится из-за сопротивления, описываемого членом g m ( dx / dt ) 2 . Определенную часть энергии осциллятор, конечно, запасет, но если усреднять по многим циклам, то количество ее не будет меняться со временем. Таким

образом средняя мощность равна Применяя метод комплексных чисел и нашу - фото 67

образом, средняя мощ­ность

равна

Применяя метод комплексных чисел и нашу теорему о том, что < А 2 > = 1 / 2 A 2 0 , легко найти эту среднюю мощность. Так как

Feynmann 2a - изображение 68 , то Следовательно средняя мощность равна 1 2gw 2x 2 0 244 Если перейти к - фото 69 . Следовательно, средняя мощность равна

= 1/ 2gw 2x 2 0. (24.4)

Если перейти к электрическим цепям, то dx / dt надо заменить на ток I (I — это dq / dt , где q соответствует х), а gm на сопро­тивление R . Значит, скорость потери энергии (мощности силы) в электрической цепи равна произведению сопротивления на средний квадрат силы тока

<���Р>=R2>=R l/ 2I 2 0. (24.5)

Энергия, естественно, переходит в тепло, выделяемое сопро­тивлением; это так называемые тепловые потери, или джоулево тепло.

Интересно разобраться также в том много ли энергии может накопить осциллятор - фото 70

Интересно разобраться также в том, много ли энергии может накопить осциллятор. Не путайте этого вопроса с вопросом о средней мощности, ибо хотя выделяемая силой мощность сна­чала действительно накапливается осциллятором, потом на его долю остается лишь то, что не поглотило трение. В каждый мо­мент осциллятор обладает вполне определенной энергией, по­этому можно вычислить среднюю запасенную энергию . Мы уже вычислили среднее значение ( dx / dt ) 2 , так что

Если осциллятор достаточно добротен и частота w близка к w 0, то Ѕ х Ѕ большая величина, запасенная энергия очень велика и можно накопить очень много энергии за счет небольшой силы. Сила производит большую работу, заставляя осциллятор рас­качиваться, но после того, как установилось равновесие, вся сила уходит на борьбу с трением. Осциллятор располагает большой энергией, если трение очень мало, и потери энергии невелики даже при очень большом размахе колебаний. Доб­ротность осциллятора можно измерять величиной запасенной энергии по сравнению с работой, совершенной силой за период колебания.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 2a»

Представляем Вашему вниманию похожие книги на «Feynmann 2a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 2a»

Обсуждение, отзывы о книге «Feynmann 2a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x