Feynmann - Feynmann 2a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 2a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 2a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 2a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 2a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 2a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Второй элемент цепи называется сопротивлением ; этот эле­мент оказывает сопротивление текущему через него электриче­скому току. Оказывается, что все металлические провода, а так­же многие другие материалы сопротивляются току одинаково; если к концам куска такого материала приложить разность по­тенциалов, то электрический ток в куске I = dq / dt будет пропор­ционален приложенной разности потенциалов

V=RI=R(dq/dt). (23.15)

Коэффициент пропорциональности называют сопротивлением R . Соотношение между током и разностью потенциалов вам, на­верное, уже известно. Это закон Ома.

Если представлять себе заряд, сосредоточенный в емкости, как нечто аналогичное смещению механической системы х, то электрический ток dq / dt аналогичен скорости, сопротивление R аналогично коэффициенту сопротивления g, а 1/С аналогично постоянной упругости пружины k . Самое интересное во всем этом, что существует элемент цепи, аналогичный массе ! Это спираль, порождающая внутри себя магнитное поле, когда через нее проходит ток. Изменение магнитного поля порождает на концах спирали разность потенциалов, пропорциональную dI / dt . (Это свойство спирали используется в трансформаторах.) Магнитное поле пропорционально току, а наведенная разность потенциалов (так ее называют) пропорциональна скорости из­менения тока

V=L(dI/dt)=L(d 2q/dt 2). (23.16)

Коэффициент L это коэффициент самоиндукции; он является электрическим аналогом массы.

Предположим, мы собираем цепь из трех последовательно соединенных элементов (фиг. 23.5); приложенная между точ­ками 1 и 2 разность потенциалов заставит заряды двигаться по цепи, тогда на концах каждого элемента цепи тоже возникает

разность потенциалов на концах индуктивности V L L d 2 q dt 2 на - фото 51

разность потенциалов: на концах индуктивности V L = L ( d 2 q / dt 2 ), на сопротивлении V R = R ( dq / dt ), а на емкости V c = q / C .

Фиг. 23.5. Электрический ко­лебательный контур, состоящий из сопротивления, индуктивности и емкости.

Сумма этих напряжений дает нам полное напряжение Мы видим что это уравнение - фото 52

Сумма этих напряжений дает нам полное напряжение

Мы видим что это уравнение в точности совпадает с механическим уравнением - фото 53

Мы видим, что это уравнение в точности совпадает с механиче­ским уравнением (23.6); будем решать его точно таким же спо­собом. Предположим, что V ( t ) осциллирует; для этого надо со­единить цепь с генератором синусоидальных колебаний. Тогда можно представить V ( t ) как комплексное число V , помня, что для определения настоящего напряжения V ( t ) это число надо еще умножить на exp ( i w t ) и взять действительную часть. Анало­гично можно подойти и к заряду q , а поэтому напишем уравнение, в точности повторяющее (23.8): вторая производная q— это (iw) 2q, а первая — это ( i w ) q . Уравнение (23.17) перейдет в

или последнее равенство запишем в виде где w 2 0 1 LC a g R L Мы - фото 54

или

последнее равенство запишем в виде

где w 2 0 1 LC a g R L Мы получили тот же знаменатель что и в - фото 55

где w 2 0 =1/ LC , a g = R / L . Мы получили тот же знаменатель, что и в механической задаче, со всеми его резонансными свойст­вами! В табл. 23.1 приведен перечень аналогий между элект­рическими и механическими величинами.

Таблица 23.1 · МЕХАНИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ

Еще одно чисто техническое замечание В книгах по электричеству используют - фото 56

Еще одно чисто техническое замечание В книгах по электричеству используют - фото 57

Еще одно чисто техническое замечание. В книгах по электри­честву используют другие обозначения. (Очень часто в книгах на одну и ту же тему, написанных людьми разных специаль­ностей, используются различные обозначения.) Во-первых, для обозначения Ц-1 используют букву j, а не i (через i должен обозначаться ток!). Во-вторых, инженеры предпочитают соотношение между V и I, а не между V и q . Они так больше привыкли. Поскольку I = dq / dt = i w q , то вместо q можно под­ставить I/iw, и тогда

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 2a»

Представляем Вашему вниманию похожие книги на «Feynmann 2a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 2a»

Обсуждение, отзывы о книге «Feynmann 2a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x