Feynmann - Feynmann 2a

Здесь есть возможность читать онлайн «Feynmann - Feynmann 2a» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 2a: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 2a»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 2a — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 2a», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 5. Комплексные числа

Хотя мы хорошо поработали, все-таки есть еще уравнения, которые нам не под силу! Например, чему равен квадратный ко­рень из -1? Предположим, что это х, тогда х 2 =- 1. Нет ни ра­ционального, ни иррационального числа, квадрат которого был бы равен -1. Придется снова пополнить запас чисел. Предполо­жим, что уравнение х 2 =- 1 все же имеет решение, и обозначим это решение буквой i; число i имеет пока только одно свойство: будучи возведенным в квадрат, оно дает -1. Вот пока и все, что можно о нем сказать. Однако уравнение х 2 =-1 имеет два корня. Буквой i мы обозначили один из корней, но кто-нибудь может сказать: «А я предпочитаю иметь дело с корнем -i; моя буква i просто минус ваша i». Возразить ему нечего, пото­му что число i определяется соотношением i 2=-1; это соотно­шение останется верным, если изменить знак i . Значит, любое уравнение, содержащее какое-то количество i , останется вер­ным, если сменить знаки у всех i . Такая операция называется комплексным сопряжением. Далее, ничто не мешает нам полу­чать новые числа вот так: сложить i несколько раз, умножить i на какое-нибудь наше старое число, прибавить результат умно­жения к старому числу и т. д. Все это можно сделать, не на­рушая ранее установленных правил. Таким образом мы при­ходим к числам, которые можно записать в виде p+iq , где p и q числа, с которыми мы имели дело ранее, их называют действительными числами. Число i называют мнимой единицей, а произведение действительного числа на мнимую единицу — чисто мнимым числом. Самое общее число а имеет вид a = p + iq , и его называют комплексным числом. Обращаться с комплекс­ными числами несложно; например, нам надо вычислить произ­ведение ( r + is )( p + q ). Вспомнив о правилах, мы получим

( r + is )( p + iq )= rp + r ( iq ) + ( is ) p + ( is )( iq )= rp + i ( rq )+ i ( sp )+( ii )( sq ) = ( rp - sq )+ i ( rq + sp ), (22.4)

потому что ii=i 2=-1. Теперь мы получили общее выражение для чисел, удовлетворяющих правилам (22.1).

Умудренные опытом, полученным в предыдущих разделах, вы скажете: «Рано говорить об общем выражении, надо еще оп­ределить, например, возведение в мнимую степень, а потом мож­но придумать много алгебраических уравнений, ну хотя бы x 6+3x 2=-2, для решения которых потребуются новые числа». В том-то и дело, что, кроме действительных чисел, достаточно изобрести только одно число — квадратный корень из -1, после этого можно решить любое алгебраическое уравнение ! Эту удивительную вещь должны доказывать уже математики. Дока­зательство очень красиво, очень интересно, но далеко не само­очевидно. Действительно, казалось бы, естественнее всего ожи­дать, что по мере продвижения в дебри алгебраических уравнений придется изобретать снова, снова и снова. Но самое чудесное, что больше ничего не надо изобретать. Это последнее изобре­тение. Изобретя комплексные числа, мы установим правила, по которым с этими числами надо обращаться, и больше ничего изобретать не будем. Мы научимся возводить комплексные числа в комплексную степень и выражать решение любого алгебраи­ческого уравнения в виде конечной комбинации уже известных нам символов. К новым числам это не приведет. Например, квадратный корень из i , или i i— опять те же комплексные числа. Сейчас мы рассмотрим это подробнее.

Мы уже знаем, как надо складывать и умножать комплекс­ные числа; сумма двух комплексных чисел + iq )+( r + is ) это число (p+r)+i(q+s). Но вот возведение комплексных чисел в комплексную степень — уже задача потруднее. Однако она оказывается не труднее задачи о возведении в комплексную сте­пень действительных чисел. Посмотрим поэтому, как возводит­ся в комплексную степень число 10, не в иррациональную, а комплексную; нам надо знать число 10 ( r + is ). Правила (22.1) и (22.2) несколько упрощают задачу

10 ( r + is )=10 r10 is (22,5)

Мы знаем, как вычислить 10 r, перемножить числа мы тоже умеем, не умеем только вычислить 10 is. Предположим, что это комплексное число x + iy . Задача: дано s , найти х и у. Если

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 2a»

Представляем Вашему вниманию похожие книги на «Feynmann 2a» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 2a»

Обсуждение, отзывы о книге «Feynmann 2a» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x