x i = x ' i + X ц . м . .
Возводя это выражение в квадрат, находим
x 2 i=x' 2 i+2X ц. мх' i+Х 2 ц . м ..
Что получится, если умножить его на m i и просуммировать по всем i? Вынося постоянные величины за знак суммирования, находим
I x=S m i x i + 2X ц. м.Sm ix i+X 2 ц. м.Sm i .
Третью сумму подсчитать легко; это просто МХ 2 ц..м.. Второй член состоит из двух сомножителей, один из которых Sm ix i ; он равен x'-координате центра масс. Но это должно быть равно нулю, ведь х' отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от I ц. Таким образом, мы и приходим к формуле (19.7).
Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML 2 /3. А центр масс стержня, разумеется, находится на расстоянии L /2. Таким образом, мы должны получить, что М L 2 /3=М L 2 /12 + М( L /2) 2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.
Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML 2 , умноженной на некоторый неизвестный коэффициент g. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/ 4g. Используя теперь теорему о параллельном переносе оси, докажем, что g= 1/ 4g+ 1/ 4, откуда g= 1/ 3. Всегда можно найти какой-нибудь окольный путь!
При применении теоремы о параллельных осях важно помнить, что ось I ц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью r, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

(поскольку все z i=0). Аналогично,

Момент инерции однородной прямоугольной пластинки, например с массой М, шириной w и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто
поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mw 2/12, т. е. точно такой же, как и для стержня длиной w , а момент инерции относительно другой оси в той же плоскости равен ML 2/12, такой же, как и для стержня длиной L .
Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

1. Момент инерции равен
2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

Таблица 19,1 · простые примеры моментов инерции
В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а
табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием пере
Читать дальше