Feynmann - Feynmann 2

Здесь есть возможность читать онлайн «Feynmann - Feynmann 2» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 2 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 3. Вычисление момента инерции

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инер­ции объекта относительно оси z имеет вид

Иными словами нужно сложить все массы умножив каждую из них на квадрат ее - фото 85

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (z 2 i+y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что рас­стояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень вращающийся относительно оси - фото 86

В качестве простого примера рассмотрим стержень, вра­щающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3).

Фиг. 19.3. Прямой стержень, вращающийся вокруг оси, прохо­дящей через один из его концов.

Нам нужно просуммировать теперь все массы умноженные на квадраты расстояния х - фото 87

Нам нужно просуммиро­вать теперь все массы, умноженные на квадраты расстояния х (в этом случав все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от x 2 , умноженный на «элементики» мас­сы. Если мы разделим стержень на кусочки длиной dx , то соот­ветствующий элемент массы будет пропорционален dx , а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/ 3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от - 1/ 2L до + 1/ 2 L . Заметим, однако, одну особенность этого случая. Такой стер­жень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L /2. Моменты инер­ции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом стержень гораздо легче крутить за середину чем за конец Можно - фото 88

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инер­ции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси. Это означает, что мы хотим найти его инертность при вра­щении вокруг этой оси. Если мы будем двигать тело за стер­жень, подпирающий его центр масс так, чтобы оно не повора­чивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и

момент инерции был бы просто равен I 1 = MR 2 ц.м. , где R ц. м .— расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инер­ции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1нужно добавить I ц— момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

I = I ц R 2 ц.м. (19-7)

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квад­ратов х и у, т. е. I=Sm i(x 2 i+ y 2 i ). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х' от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 2»

Представляем Вашему вниманию похожие книги на «Feynmann 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 2»

Обсуждение, отзывы о книге «Feynmann 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x