
Теперь нам следует связать динамику вращения с динамикой частиц, из которых сделано тело, т. е. выяснить, как движется каждая данная частица, если угловая скорость составляет столько-то радиан в секунду. Для этого давайте возьмем какую-то частицу, расположенную на расстоянии r от оси, и будем, как обычно, говорить, что в данный момент времени она находится в определенном положении Р(х, у) (фиг. 18.1).
Фиг. 18.1. Кинематика двумерного вращения.
Через промежуток времени Dt тело целиком повернется на угол Dq, а вместе с ним повернется и наша частица. Хотя расстояние от нее до оси вращения О остается тем же самым, она уже переместится в другую точку, Q . Первое, что хотелось бы знать, это насколько изменятся расстояния х и y. Если обозначить через r длину ОР, то длина PQ будет равна rDq (просто по определению угла). Тогда изменение расстояния х будет равно проекции rDq на ось х
Dz=-PQsinq =-гDqy/r=-y/Dq. (18.6)
Аналогично,
Dy=xDq. (18.7)
Если тело вращается с угловой скоростью w, то, деля обе части равенства (18.6) и (18.7) на Dt, найдем компоненты скорости частицы
v x =-wx и v y =wy. (18.8)

Если же нам требуется абсолютная величина скорости, то мы просто пишем
Не удивительно, что абсолютная величина скорости получилась равной wr; это же очевидно; ведь полное пройденное расстояние равно rDq, а поэтому расстояние, пройденное за 1 сек, будет rDq/Dt, или rw.
Перейдем теперь к рассмотрению динамики вращения. Здесь следует ввести новое понятие — силу. Давайте посмотрим, нельзя ли изобрести нечто, играющее ту же роль, что и сила в линейном движении. Это нечто мы будем называть моментом силы, или просто моментом. Обычно под силой мы понимаем нечто, заставляющее покоящееся тело двигаться, а то, что заставляет тело вращаться, есть «вращающая», или «крутящая», сила; ее мы называем моментом. Таким образом, качественно момент силы — это кручение; но что такое момент силы количественно? Количественную теорию момента можно получить, изучая работу, затраченную на поворот тела. Этот подход очень хорош и для определения силы: если мы знаем, какая требуется работа, чтобы совершить данное перемещение, то знаем и силу. Чтобы продолжить соответствие между угловыми и линейными величинами, мы должны приравнять работу, которая производится при повороте тела на какой-то угол, к произведению момента на этот угол. Другими словами, при таком определении момента теорема о работе имеет абсолютный аналог: работа есть сила на перемещение, или момент на угол. Это сразу говорит нам, что такое момент количественно. Рассмотрим, например, твердое тело, вращающееся вокруг оси, на которое действуют различные силы. Сконцентрируем сначала наше внимание на одной силе, приложенной к некоторой точке (х, у). Какую работу мы затрачиваем, поворачивая тело на некоторый малый угол Dq? Нетрудно понять, что она равна
DW=F xDx+F yDy. (18.10)
Теперь нужно только подставить выражения (18.6) и (18.7) для Dx; и Dy и получить
DW=(xF y-yF x) Dq, (18.11)
т. е. работа, которую мы проделали, равна углу, на который было повернуто тело, умноженному на какую-то странную комбинацию сил и расстояний. Эта «странная комбинация» и есть момент. Таким образом, определяя изменение работы как момент, умноженный на угол поворота, мы получаем формулу, выражающую момент через силы. (Это понятно. Поскольку момент не является полностью новым понятием, не зависящим от механики Ньютона, то он должен определенным образом выражаться через силу.)

Пусть теперь на тело действует несколько сил. Тогда работа, производимая этими силами, равна сумме работ от каждой силы, так что DW будет иметь вид суммы множества членов: по одному для каждой из сил, однако каждый из них пропорционален Dq. Эту величину Dq можно вынести за скобку и получить, что работа равна сумме моментов от всех действующих сил, умноженной на Dq. Эту сумму можно назвать полным моментом сил и обозначить t. Как видите, моменты складываются по обычным законам алгебры, однако, как вы узнаете после, это происходит из-за того, что мы ограничиваемся только плоскими вращениями. Эта ситуация напоминает одномерное движение, в котором силы просто складываются алгебраически; ведь все они в этом случае действуют вдоль одной и той же прямой. В трехмерном пространстве все более сложно. Таким образом, для двумерного вращения
Читать дальше