
Мы узнаем в этом выражении знакомое нам преобразование
Теперь мы должны найти новый импульс р х . Он равен энергии Е', умноженной на v ', и так же просто выражается через Е и р:

и мы опять распознаем в этой формуле знакомое нам

Итак, преобразование старых энергии и импульса в новые энергию и импульс в точности совпало с преобразованием t и х в t ' и х и t в х': если мы в уравнениях (17.4) будем писать Е каждый раз, когда увидим t , а вместо x: всякий раз будем подставлять р х , то уравнения (17.4) превратятся в уравнения (17.10) и (17.11). Если все верно, то это правило предполагает добавочные равенства р ' у =-р y и р ' z =р z . Чтобы их доказать, надо посмотреть, как преобразуется движение вверх или вниз. Но как раз в предыдущей главе мы рассмотрели такое движение. Мы анализировали сложное столкновение и заметили, что поперечный импульс действительно не меняется при переходе в движущуюся систему координат. Стало быть, мы уже убедились, что р ' у =р у и p z = p z . Итак, полное преобразование равно

Таким образом, эти преобразования выявили четыре величины, которые преобразуются подобно х, у, z , t . Назовем их четырехвектор импульса. Так как импульс — это четырехвектор, его можно изобразить на диаграмме пространства-времени движущейся частицы в виде «стрелки», касательной к пути (фиг. 17.4).

Фиг. 17.4. Четырехвектор импульса частицы.
У этой стрелки временная компонента дает энергию, а пространственные — тривектор импульса; сама стрелка «реальнее», чем один только импульс или одна лишь энергия: ведь и импульс, и энергия зависят от нашей точки зрения.
§ 5. Алгебра четырехвекторов
Четырехвекторы обозначаются иначе, чем тривекторы. Например, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах р х , p у , р z ; можно писать и короче р i , оговаривая, что i принимает три значения х, у и z. Для четырехвекторов мы будем применять похожее обозначение: будем писать р m , а m. пусть заменяет собой четыре направления t , x , у, z .
Конечно, можно пользоваться любыми обозначениями. Не улыбайтесь, что мы так много говорим об обозначениях; учитесь изобретать их: в них вся сила. Ведь и сама математика в значительной степени состоит в изобретении лучших обозначений. Идея четырехвектора — это тоже усовершенствование обозначений с таким расчетом, чтобы преобразования было легче запомнить.
Итак, А m — это общий четырехвектор, р m — четырехимпульс, p t — энергия, р х — импульс в направлении х, р y — в направлении у, p z — в направлении z. Складывая четырехвекторы, складывают их соответствующие компоненты.

Если четырехвекторы связаны каким-то уравнением, то это значит, что уравнение выполняется для любой компоненты. Например, если закон сохранения тривектора импульса соблюдается в столкновении частиц, т. е. сумма импульсов множества взаимодействующих или сталкивающихся частиц постоянна, то это означает, что сумма всех компонент импульсов постоянна и в направлении х, и в направлении у, и в направлении 2. Сам по себе такой закон в теории относительности невозможен: он неполон; это все равно, что говорить только о двух компонентах тривектора. Неполон он потому, что при повороте осей разные компоненты смешиваются, значит, в закон сохранения должны войти все три компоненты. Таким образом, в теории относительности нужно дополнить закон сохранения импульса, включив в него сохранение временной компоненты. Абсолютно необходимо, чтобы сохранение первых трех компонент сопровождалось сохранением четвертой, иначе не получится релятивистской инвариантности. Четвертое уравнение — это как раз сохранение энергии; оно должно сопровождать сохранение импульса для того, чтобы четырехвекторные соотношения в геометрии пространства-времени были справедливы. Итак, закон сохранения энергии и импульса в четырехмерном обозначении таков:
Читать дальше