Давайте разберем интересный пример упругого столкновения двух тел равных масс. Если такие тела ударяются друг о друга с какой-то равной скоростью, то по соображениям симметрии они должны разлететься в стороны с той же скоростью. Но давайте посмотрим на этот процесс в несколько другой ситуации, когда одно из тел движется со скоростью v , а другое покоится. Что произойдет в этом случае? Такая задача не нова для нас. Нужно посмотреть из автомобиля, движущегося рядом с одной из частиц, на симметричное соударение. Мы увидим, как движущееся тело столкнется с покоящимся и остановится, а то, которое раньше покоилось, полетит вперед, причем в точности с той же скоростью, с которой двигалось первое. Тела попросту обменяются своими скоростями. Это легко можно подтвердить экспериментально. Вообще если два тела движутся навстречу друг другу с различными скоростями, то при упругом соударении они просто обмениваются скоростями.
Другой пример почти абсолютно упругого взаимодействия дает нам магнетизм. Положите пару U-образных магнитов на наши скользящие бруски в воздушном желобе так, чтобы они отталкивались друг от друга. Если теперь потихоньку подтолкнуть один из брусков к другому, то он, не касаясь, оттолкнет его, а сам остановится. Второй же брусок полетит вперед.
Закон сохранения импульса — очень полезная штука. Он позволяет решить многие проблемы, не входя в детали процесса. Нас, например, совершенно не интересовали детали движения газа при взрыве заряда, но тем не менее мы могли предсказать, во сколько раз одно тело будет двигаться быстрее второго при их разлете. Другой интересный пример — это ракетный двигатель. Ракета большой массы М с огромной скоростью V (относительно самой ракеты) извергает сравнительно небольшое количество m газа. Чтобы сохранить импульс, ракета начинает двигаться с небольшой скоростью v . Используя закон сохранения импульса, можно подсчитать, что v=(m/M)V. Однако по мере извержения скорость ракеты становится все больше и больше. Механизм действия ракетного двигателя в точности сходен с явлением отдачи ружья; здесь не нужен воздух, чтобы отталкиваться от него.
§ 5. Релятивистский импульс
Уже на нашей памяти закон сохранения импульса претерпел некоторые изменения. Они, однако, не коснулись самого закона как такового, просто изменилось понятие импульса. В теории относительности, как оказалось, импульс уже не сохраняется, если его понимать так же, как и прежде. Дело в том, что масса не остается постоянной, а изменяется в зависимости от скорости, а потому изменяется и импульс. Это изменение массы происходит по закону

где m 0— масса покоящегося тела, c — скорость распространения света. Из этой формулы видно, что при обычных скоростях (если v не очень велико) m очень мало отличается от m 0, а импульс поэтому с очень хорошей точностью выражается старой формулой.
Компоненты импульса для одной частицы можно записать в виде

где v 2 =v 2 x +v 2 y + v 2 z . Если просуммировать x-компоненты импульсов всех взаимодействующих частиц, то эта сумма как до столкновения, так и после окажется одной и той же. Это и есть закон сохранения импульса в направлении оси х. То же можно сделать и в любом другом направлении.
В гл. 4 мы уже видели, что закон сохранения энергии неверен, если мы не признаем эквивалентности энергии во всех ее формах, т. е. электрической энергии, механической энергии, энергии излучения, тепловой и т. д. Про некоторые из этих форм, например тепло, можно сказать, что энергия «скрыта» в них. Напрашивается вопрос: а не существуют ли также «скрытые» формы импульса, скажем «тепловой импульс»? Дело в том, что импульс утаить невозможно; скрыть его очень трудно по следующим причинам.
Мера тепловой энергии — случайного движения атомов тела — представляет собой просуммированные квадраты их скоростей. В результате получается некоторая положительная величина, не имеющая направленного характера. Так что тепло как бы заключено внутри тела независимо от того, движется ли оно как целое или нет. Поэтому сохранение энергии в тепловой форме не очень очевидно. С другой стороны, если мы просуммируем скорости, которые имеют направление, и в результате получим не нуль, то это означает, что само тело целиком движется в некотором направлении, а такое макродвижение мы уже способны наблюдать. Так что никакой случайной внутренней потери импульса не существует: тело обладает определенным импульсом, только когда оно движется целиком. В этом и состоит основная причина того, что импульс трудно скрыть. Но тем не менее скрыть его все же можно, например в электромагнитное поле. Это еще одна из особенностей теории относительности.
Читать дальше