Рассмотрим теперь картину посложнее, когда есть три или большее число взаимодействующих частиц. Очевидно, что если существуют только внутренние силы, то полный импульс всех частиц остается постоянным, поскольку увеличение импульса одной частицы под воздействием другой частицы в точности компенсируется уменьшением импульса этой второй частицы из-за противодействия первой, т. е. внутренние силы так сбалансированы, что полный импульс всех частиц измениться не может. Таким образом, если нет сил, действующих на систему извне (внешних сил), то ничто не может изменить ее полный импульс и, следовательно, он остается постоянным.
Но нужно еще сказать о том, что произойдет, если будут еще существовать какие-то другие силы, кроме сил взаимодействия между частицами. Предположим, что мы изолировали систему взаимодействующих частиц. Если имеются только взаимные силы, полный импульс, как и прежде, меняться не будет, сколь бы сложны ни были эти силы. Если, однако, существуют силы, обусловленные частицами вне этой изолированной группы, то, как мы докажем позднее, сумма всех этих внешних сил равна скорости изменения полного импульса всех внутренних частиц. Это очень полезная теорема.
Закон сохранения полного импульса некоторого числа взаимодействующих частиц в отсутствие внешних сил можно записать в виде
m 1v 1+m 2v 2+m 3v 3+ ... =const, (10.3)
где m i и v i— просто масса и скорость частицы соответствующего номера. Однако для каждой из этих частиц Второй закон Ньютона
f=(d/dt)(mv) (10.4)
пишется для любой составляющей полной силы и импульса в любом заданном направлении, так что x-компонента силы, действующей на частицу, равна скорости изменения x-компоненты импульса этой частицы
f x =( d / dt )( mv x ). (10.5)
Точно такие же формулы можно написать для у- и z-компонент. Это означает, что уравнение (10.3) фактически представляет собой три уравнения: по одному на каждую из компонент.
Существует еще одно интересное следствие Второго закона Ньютона, кроме закона сохранения импульса. Доказательством его мы будем заниматься позднее, а сейчас я просто расскажу вам о нем. Следствие или, скорее, принцип состоит в том, что законы физики не изменяются от того, стоим ли мы на месте или движемся равномерно и прямолинейно. Пусть, например, на быстро летящем самолете ребенок играет с мячиком. Наблюдательный ребенок сразу заметит, что мячик прыгает точно так же, как и на земле. Иначе говоря, законы движения для ребенка в самолете (если только последний не меняет скорости) выглядят одинаково как на поле аэродрома, так и в полете. Этот факт известен под названием принципа относительности. В том виде, в котором он рассматривается здесь, мы будем называть его «принципом относительности Галилея» или «галилеевской относительностью», чтобы не путать его с более тщательным анализом, проделанным Эйнштейном, но об этом несколько позже.
Таким образом, из закона Ньютона мы вывели закон сохранения импульса, а теперь давайте посмотрим, какие специфические законы описывают соударение и рассеяние частиц. Однако для разнообразия, а также чтобы продемонстрировать типичные рассуждения, которыми мы часто пользуемся в физике в других случаях, когда, скажем, не известны законы Ньютона и должен быть принят иной метод рассмотрения, давайте обсудим законы рассеяния и соударения с совершенно другой точки зрения. Мы будем исходить из принципа относительности Галилея и в конце рассуждений придем к закону сохранения импульса.
Итак, начнем с утверждения, что законы природы не изменяются от того, что мы движемся прямолинейно с некоторой скоростью или стоим на месте. Однако прежде чем обсуждать процессы, в которых два тела сталкиваются и слипаются или разлетаются в стороны, давайте рассмотрим случай, когда эти два тела связаны между собой пружинкой или чем-то в этом роде, а затем вдруг освобождаются и разлетаются под действием этой пружинки или, быть может, небольшого взрыва в разные стороны. Кроме того, рассмотрим движение только в одном направлении. Предположим сперва, что эти два тела совершенно одинаковы и расположены симметрично. Когда между ними произойдет взрыв, одно из них полетит направо с некоторой скоростью v . Тогда естественно, что другое полетит налево с той же самой скоростью v , поскольку оба тела подобны и нет никаких причин считать, что левая сторона окажется предпочтительнее правой. Итак, с телами должно происходить нечто симметричное. Этот пример показывает, насколько полезны рассуждения такого рода в различных задачах. Но они не всегда столь ясны, когда затуманены формулами.
Читать дальше