Теперь пусть под действием силы меняется не только величина, но и направление скорости (фиг. 9.2). Хотя это довольно сложный случай, но с помощью подсчета изменения компонент его рассмотрение сильно упрощается. Изменение x-компоненты скорости за интервал Dt будет Dv x=a xDt, где а хто, что называется x-компонентой ускорения. Совершенно аналогично Dv x=a уDt и Дv z=a tDt. В такой формулировке Второй закон Ньютона фактически превращается в три закона. Действительно, мы говорим, что сила имеет то же направление, что и ускорение, так что каждая из составляющих силы в направлениях х, у и z равна массе, умноженной на изменение соответствующей компоненты скорости:

Подобно скорости и ускорению, сила тоже может быть разложена на компоненты, причем каждая из них является проекцией отрезка прямой, численно равного абсолютной величине силы и указывающего направление ее действия, на оси х, у и z:

где F — абсолютная величина силы, a (xF), (yF) и (zF)— углы между направлением силы и осями х, у и z соответственно.
Уравнения (9.7) представляют собой полную форму Второго закона Ньютона. Зная силы, действующие на тело, и разлагая их на компоненты, можно с помощью этих уравнений найти движение тела. Давайте рассмотрим простой пример. Пусть в направлениях х и у не действуют никакие силы, а есть сила только в направлении z (скажем, вертикально). Тогда, согласно уравнению (9.7), изменяется только одна вертикальная составляющая скорости; что же касается горизонтальных, то они будут оставаться неизменными. Пример такого движения уже рассматривался в гл. 7 (см. фиг. 7.3). Таким образом, горизонтальное движение падающего тела остается неизменным, тогда как в вертикальном направлении оно движется так, как будто никакого горизонтального движения вообще нет. Другими словами, если компоненты сил не связаны друг с другом, то и движения в направлениях осей х, у и z будут независимы.
§ 3. Что такое сила?
Чтобы пользоваться законами Ньютона, мы должны иметь какую-то формулу для сил; ведь эти законы говорят нам: подумайте о силах. Если тело ускоряется, стало быть, на него что-то действует. А как найти это «что-то»? Нашей программой на будущее должно быть отыскание законов для сил. Некоторые из таких законов были найдены самим Ньютоном. Например, формула для силы тяготения. Часть сведений о силах другого рода содержится в Третьем законе, который утверждает равенство сил действия и противодействия, но об этом более подробно пойдет речь в следующей главе.
Продолжим наш предыдущий пример. Что за силы действуют на тело вблизи поверхности Земли? Это — сила тяжести, направленная вертикально вниз, пропорциональная массе тела и для высот, много меньших, чем радиус Земли R, почти не зависящая от высоты; она равна F=GmM/R 2=mg, где g=GM/R 2— так называемое ускорение силы тяжести. В горизонтальном направлении тело по-прежнему будет двигаться с постоянной скоростью, однако движение в вертикальном направлении более интересно. По Второму закону Ньютона

После сокращения массы m получаем, что ускорение в направлении х постоянно и равно g. Это хорошо известное движение свободно падающего тела, которое описывается уравнениями

Рассмотрим другой пример. Представим, что мы смогли создать устройство (фиг. 9.3), в котором сила прямо пропорциональна отклонению от положения равновесия и направлена противоположно ему,— это пружина с грузиком.

Фиг. 9.3. Грузик на пружинке.
Действительно, поскольку сила тяжести компенсируется начальным натяжением пружины, то имеет смысл говорить только об избыточной силе. Если потянуть грузик вниз, то пружина растянется и потянет его вверх, если же толкать грузик вверх, то пружина сожмется и будет толкать его вниз. При этом все устроено таким образом, что чем больше сила и чем сильнее мы оттягиваем грузик вниз, тем больше растягивается пружина и тем сильнее она тянет его вверх, и наоборот. Наблюдая за работой этого устройства, мы видим довольно интересное движение: вверх — вниз, вверх — вниз... Возникает вопрос, могут ли уравнения Ньютона правильно описать его? Если применить закон Ньютона (9.7) для такого периодического осциллятора, то получим следующее уравнение:
Читать дальше