Корпус космического аппарата можно представить как твердое тело с набором упругих нелинейных осцилляторов — антенн, солнечных батарей, навесного оборудования и т. п.
Корпусу аппарата надо придать требуемое угловое положение в пространстве и поддерживать его в этом положении заданное время. На космический аппарат действуют возмущения от солнечного ветра, магнитного поля, утечек газа. Возникающие отклонения можно устранить, раскручивая один из приводов — маховиков, что приведет к повороту аппарата в обратную сторону. Но трудно рассчитать заранее, каким будет движение аппарата в ответ на движение маховика. Помочь может адаптивная система управления Pilot.
Входной информацией для разрабатываемой управляющей системы служили показания датчиков, измеряющих угол между действительным и заданным положениями космического аппарата, а также скорость его углового движения. Управляющей системе ставилась цель: поддерживать угол и угловую скорость по возможности ближе к нулевым значениям. Выходные (управляющие) воздействия управляющей системы представляли собой команды приводам развить те или иные крутящие моменты, поворачивающие космический аппарат в соответствующем направлении с соответствующей скоростью. Управляющая система должна была адаптироваться к характерным реакциям космического аппарата на управляющие моменты. Именно эти реакции и трудно рассчитать заранее с надлежащей точностью, так как космический аппарат несет на себе упругие нелинейные осцилляторы, которые в условиях космоса ведут себя не совсем так, как в наземных испытаниях.
Построенный нами прототип системы управления Pilot показал, что она действительно успешно адаптируется к свойствам космического аппарата и способна повысить качество управления его угловым движением в несколько раз. Чтобы достичь аналогичного результата традиционными методами, потребовались бы значительно большие затраты времени и сил.
Система Pilot демонстрирует интересные свойства, основное из которых — адаптивность, то есть способность управляющей системы приспосабливаться к свойствам объекта управления и окружающей среды. Этим свойством обладают многие блоки управляющей системы Pilot. В процессе обучения управляющая система совершает по определенному плану пробные управляющие воздействия на объект управления и выясняет его реакции на эти воздействия. Вся информация о происходящем отображается в управляющей системе в виде «образов» — образов углового положения, образов управляющих воздействий, образов эмоциональных оценок состояний. Последние вырабатываются «эмоциональным аппаратом» управляющей системы, подсказывающим, насколько «хорошо» или «плохо» то или иное текущее угловое положение космического аппарата. Если эту эмоциональную оценку выражать не числом, а некоторой мимикой «лица» управляющей системы, то будет весьма любопытно наблюдать за ее «гримасами».
Если управляющая система выясняет, что причинно-следственные связи некоторых образов неслучайны, то она запоминает это в своей базе знаний. Заметим, что такие «знания» управляющая система добывает самостоятельно, в этом проявляется ее автономность. Чем больше знаний о свойствах космического аппарата накопила управляющая система, тем более успешно она может управлять им. Если свойства космического аппарата изменяются, например, аппарат стал легче из-за выработки горючего или изменилась конфигурация аппарата — раскрылись антенны, изменились упругие свойства осцилляторов из-за поломки, появилась утечка газа и аппарат стало разворачивать, — управляющая система, обнаружив ухудшение качества управления, начинает переучиваться, корректирует свои знания, и качество управления вновь повышается. Если на аппарат воздействовать кратковременным возмущением (толкнуть его), управляющая система быстро гасит возмущение.
Одно свойство управляющей системы для нас оказалось неожиданным. После обучения управляющей системы, при котором на космический аппарат оказывают случайные пробные воздействия, качество управления вначале невысоко, но уже в процессе управления оно постепенно возрастает. Выяснилось, что свойства объекта управления зависят от того, каким способом вы его испытываете: обращаетесь ли с ним бесцеремонно, дергая его во все стороны, «тряся как грушу» в процессе исследования-обучения, или испытываете его осторожно. Это имеет прямую аналогию с жизненными ситуациями: так врач, бережно исследующий пациента, точнее поставит диагноз, нежели обращающийся с пациентом неделикатно. Оказалось также, что из обученной базы знаний можно извлечь самые важные знания и, представив их в удобной форме, передать более простой детерминированной системе управления, которая сможет управлять объектом, но уже без адаптации.
Читать дальше