Данные, приведённые в таблице 9.7, предусматривают: расстояние между несущими стенами – 5,0 м; собственный вес перекрытия – до 0,8 кН/м²; полезную нагрузку на перекрытие – 2,0 кН/м²; класс качества древесины – C18 (3-й сорт).
Исходные данные:
Ширина дома со стропильной системой из свободно опёртых ферм (W-образных ферм) равна 8,8 м. Расчётная снеговая нагрузка – 3,5 кН/м². Ширина оконного проёма – 1,1 м. Перемычка проёма будет нагружена нагрузкой с кровли (проём типа B по норвежской классификации). Проектом предусмотрен каркас стен из досок 36×148 мм.
Решение:
В таблице 9.6 выбираем колонку с максимальной шириной проёма 1,2 м и видим что для перемычки 2 шт. 48×148 максимальная ширина дома – не более 9,5 м. Так как ширина дома у нас меньше – выбираем эту перемычку. Исходя из данных приведённых в таблице 9.6 минимальная ширина стоек-опор в данном случае 36 мм. Следовательно, в проекте под этот проём предусматриваем конструкцию, показанную на рисунке 9.22.
Пример 2.
Исходные данные:
Ширина дома равна 7,5 м. Проектом предусмотрена внутренняя несущая стена. Расчётная снеговая нагрузка – 6,0 кН/м². Ширина проёма в этой внутренней несущей стене составляет 1,7 м. Перемычка проёма будет нагружена нагрузкой с кровли (проём типа B по норвежской классификации). Проектом предусмотрен каркас стен из досок 36×198 мм.
Решение:
В таблице 9.6 выбираем колонку с максимальной шириной проёма 1,8 м и видим что для перемычки 2 шт. 48×198 максимальная ширина дома – не более 5,7 м. В данном случае максимальная ширина дома, указанная в таблице 9.6, будет соответствовать расстоянию между несущей наружной и несущей внутренней стеной, как показано на рис. 9.26. Следовательно, для перемычки 2 шт. 48×198 в несущей внутренней стене максимальная ширина дома = (5,7х2) – 0,6 = 10,8 м. В нашем случае ширина дома всего 7,5 м, а значит перемычки сечением 2 шт. 48×198 хватит с запасом.
Минимальная ширина стоек-опор в соответствии с таблицей 9.6 в данном случае будет 48 мм.
Следовательно, в проекте под этот проём предусматриваем конструкцию, показанную на рисунке 9.23 и используем составные стойки опоры из доски 36×198 мм, соединяя их на 2 гвоздя с шагом 200 мм по всей высоте.
Обеспечение жёсткости каркаса при восприятии ветровых нагрузок
Обеспечение жёсткости каркаса при восприятии горизонтальных ветровых нагрузок происходит с помощью обшивки каркаса жёсткими плитными или листовыми материалами как минимум с одной стороны или с помощью диагональных связей – укосин или стальных перфорированных лент при отсутствии жёстких обшивок.
Если обшивка жёсткими плитами будет проводиться только с одной стороны каркаса, то согласно норвежским строительным правилам и рекомендациям норвежского научно-исследовательского института SINTEF Byggforsk, устанавливаются минимальные требования для материалов обшивки – в совокупности к плитам и крепежу. В частности, предел прочности на изгиб устанавливается минимум 3 кН/м. Это означает, что плита обшивки, шириной 1,2 м, смонтированная на стеновую панель, должна выдерживать горизонтальную нагрузку 3,6 кН (1,2 м × 3 кН/м), что соответствует 360 кг.
Плиты обшивки стен работают на изгиб под воздействием горизонтальных нагрузок, создаваемых давлением и отсосом ветра (рис. 9.27). В качестве наружных плит жёсткой обшивки нужно применять МДВП (мягкие древесноволокнистые плиты ветрозащиты) толщиной минимум 12 мм или ветрозащитный гипсокартон для наружной обшивки толщиной минимум 6—9 мм. С внутренней стороны деревянных каркасных стен в таком случае нужно монтировать гипсокартонные плиты для внутренней обшивки толщиной 13 мм, древеснослоистые фанерные плиты из шпона или МДВП толщиной 12 мм.
Рис. 9.27 Действие ветра на плитные материалы обшивки
Как правило, материалы обшивки стен обладают избыточным запасом прочности. Это означает, что увеличение жёсткости каркаса нужно достигать не увеличением толщины плит, а увеличением количества крепёжных элементов.
Практика показывает, что самым слабым звеном в обеспечении жёсткости каркаса с помощью плитных материалов являются именно крепёжные элементы. Наибольшие нагрузки испытывают края плит, поэтому крепеж здесь нужно устанавливать чаще, чем в середине (рис. 9.28).
Читать дальше