Кластеризация временных данных (Temporal data clustering) – разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации.
Кластеризация временных данных (Temporal data clustering) – это разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации.
Кластеризация на основе центроида (Centroid-based clustering) – это категория алгоритмов кластеризации, которые организуют данные в неиерархические кластеры. Алгоритм k средних (k-means) – это наиболее широко используемый алгоритм кластеризации на основе центроидов, один из алгоритмов машинного обучения, решающий задачу кластеризации.
Кластерный анализ (Cluster analysis) – это тип обучения без учителя, используемый для исследовательского анализа данных для поиска скрытых закономерностей или группировки в данных; кластеры моделируются с мерой сходства, определяемой такими метриками, как евклидово или вероятностное расстояние.
Ключевые точки( Keypoints) – это координаты определенных объектов на изображении. Например, для модели распознавания изображений в задачах компьютерного зрения, такие как оценка позы человека, обнаружение лиц и распознавание эмоций, обычно работают с ключевыми точками на изображении.
К-Медиан( K-median) – это алгоритм кластеризации, вариация k-means метода кластеризации, где для определения центра кластера вместо среднего вычисляется медиана (по каждому из измерений). Алгоритм кластеризации k-medoids похож на алгоритм k-means, но в отличие от него на каждой итерации ищет центры кластеров не как среднее точек, а как медоиды точек. То есть, центр кластера должен обязательно являться одной из его точек. Медоидом для множества точек называется одна из точек множества, сумма расстояний до которой от всех точек множества минимальна. Алгоритм k-medoids, в отличие от k-means, использует для представления центра кластера не центр масс, а представительный объект – один из объектов кластера. Как и в методе k-means, сначала произвольным образом выбирается k представительных объектов. Каждый из оставшихся объектов объединяется в кластер с ближайшим представительным объектом. Затем итеративно для каждого представительного объекта производится его замена произвольным непредставительным объектом пространства данных. Процесс замены продолжается до тех пор, пока улучшается качество результирующих кластеров. Качество кластеризации определяется суммой отклонений между каждым объектом и представительным объектом соответствующего кластера, которую метод стремится минимизировать. То есть, итерации продолжаются до тех пор, пока в каждом кластере его представительный объект не станет медоидом – наиболее близким к центру кластера объектом. [ 35 35 К-Медиан [Электронный ресурс] //lektsia.com URL: https://lektsia.com/6xe906.html (дата обращения: 07.07.2022)
]
Коадаптация (Co-adaptation) – это процесс, когда нейроны предсказывают закономерности в обучающих данных, полагаясь почти исключительно на выходные данные конкретных других нейронов, а не на поведение сети в целом. Регуляризация отсева снижает коадаптацию, поскольку отсев гарантирует, что нейроны не могут полагаться исключительно на определенные другие нейроны.
Когнитивистика, когнитивная наука (Cognitive science) – это междисциплинарное научное направление, объединяющее теорию познания, когнитивную психологию, нейрофизиологию, когнитивную лингвистику, невербальную коммуникацию и теорию искусственного интеллекта.
Когнитивная архитектура (Cognitive architecture) – это гипотеза о фиксированных структурах, обеспечивающих разум, будь то в естественных или искусственных системах, и о том, как они работают вместе – в сочетании со знаниями и навыками, воплощенными в архитектуре. Также, архитектуры, реализованные интеллектуальными агентами, называются когнитивными архитектурами.
Читать дальше