Джон Грин: Многочисленные Катерины

Здесь есть возможность читать онлайн «Джон Грин: Многочисленные Катерины» — ознакомительный отрывок электронной книги, а после прочтения отрывка купить полную версию. В некоторых случаях присутствует краткое содержание. Город: Москва, год выпуска: 2015, ISBN: 978-5-386-07982-6, издательство: Array Литагент «РИПОЛ», категория: Современная проза / ya / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

Джон Грин Многочисленные Катерины
  • Название:
    Многочисленные Катерины
  • Автор:
  • Издательство:
    Array Литагент «РИПОЛ»
  • Жанр:
    Современная проза / ya / на русском языке
  • Год:
    2015
  • Город:
    Москва
  • Язык:
    Русский
  • ISBN:
    978-5-386-07982-6
  • Рейтинг книги:
    4 / 5
  • Избранное:
    Добавить книгу в избранное
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Многочисленные Катерины: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Многочисленные Катерины»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Новая веселая и нескучная книга от автора бестселлеров «Виноваты звезды» и «Бумажные города». Вундеркинд Колин Одинец только что окончил школу и пребывает в депрессии. Вместе с лучшим другом Хасаном он отправляется в незабываемое путешествие, которое навсегда изменит его жизнь. Друзьям предстоит пережить удивительные приключения, вывести формулу романтических отношений, бороться, влюбляться, разочаровываться, открыть тайну многочисленных Катерин и, наконец, стать по-настоящему счастливыми. Настоящее очарование этой книги – в характерах главных героев – жизнеутверждающих, умных, не вписывающихся в общественные рамки – и в диалогах. В книгах Джона Грина диалог – это оружие, которое сразит читателя наповал.

Джон Грин: другие книги автора


Кто написал Многочисленные Катерины? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Многочисленные Катерины — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Многочисленные Катерины», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Шрифт:

Интервал:

Закладка:

Сделать

Между сиденьями просунулся Гассан:

– Кстати, да. Не будем останавливаться.

Колин нажал на педаль газа, думая о том, как много дорог открыто для них и как не скоро кончится лето. Линдси Ли Уэллс, сидевшая рядом, коснулась его руки и сказала:

– Да. В самом деле. Едем дальше.

И по спине Колина побежали мурашки. Он вдруг ощутил родство со всеми, кто сидел сейчас в его машине. И со всеми, кто в ней не сидел. И понял, что он не уникален, – в самом лучшем смысле этого слова.

[примечание автора]

Одна из сносок в романе, который вы только что закончили читать, если, конечно, не заглянули в конец (вернись и читай с начала и до конца, не пытайся узнать, чем все закончилось, хитрый плут!), обещала математическое приложение. Вот и оно.

Так уж вышло, что в одиннадцатом классе я получил тройку с минусом по алгебре, несмотря на героические усилия моего учителя математики мистера Лантрипа. А потом я учил что-то под названием «конечная математика», потому что этот курс был намного проще алгебры. После школы я выбрал тот университет, где не нужно было сдавать математику. Но после того, как я его закончил – знаю, это прозвучит странно, – я даже немного заинтересовался математикой. Но, к сожалению, я до сих пор ничего не смыслю в ней. Я интересуюсь математикой так же, как в девять лет интересовался скейтбордом. Я много о ней говорю и много о ней думаю, но на самом деле совсем ей не занимаюсь.

К счастью, я дружу с парнем по имени Дэниэл Бисс, одним из лучших молодых математиков Америки. Дэниэл – математик с мировым именем, которое он заслужил благодаря опубликованной несколько лет назад научной работе, в которой, судя по всему, доказал, что окружности – это жирные, раздутые треугольники. А еще он – один из моих самых лучших друзей. Именно благодаря Дэниэлу Колин в моей книге использует настоящие математические формулы. Я попросил Дэниэла написать приложение о математических основаниях теоремы Колина. Это приложение, как и любые другие приложения, читать совершенно не обязательно. Но оно жутко интересное. Вам понравится.

Джон Грин

[приложение]

Озарение Колина имеет три составляющие.

Во-первых, он заметил, что отношения – это такая штука, для которой можно построить график; один из таких графиков приведен ниже.


Фото

Согласно теории Колина, горизонтальная линия (называемая осью Х) обозначает время. Первый раз, когда кривая пересекает ось Х, – это начало отношений, а когда второй – расставание. Если в промежутке кривая проходит над осью X (как в нашем примере), значит, девочка бросает мальчика; если же кривая проходит под осью X, это означает, что мальчик бросает девочку. («Мальчик» и «девочка» в нашем случае – обозначения условные; в случае однополых отношений, они могут быть «мальчик 1» и «мальчик 2», или «девочка 1» и «девочка 2».) На нашем графике пара впервые целуется во вторник, и девочка бросает мальчика в среду. (В целом, вполне типично для романа между Колином и Катериной.)

Поскольку кривая пересекает ось X только в начале и конце отношений, то, чем дальше проходит кривая от оси, тем дальше момент расставания, или, говоря иначе, тем лучше развиваются отношения.

Вот более сложный пример, график моего романа с одной из моих бывших.


Фото

Первый всплеск произошел в феврале, когда через считаные часы после нашей встречи вдруг началась метель и она, разбив машину на заледеневшей дороге, сломала руку. Нам пришлось запереться в моей квартире. Она глотала обезболивающие, а я пытался сжиться с новыми для себя ролями медбрата и бойфренда, что основательно вскружило мне голову. Но этот период закончился внезапно, когда, две недели спустя, снег растаял, рука зажила, и, выбравшись из моей квартиры во внешний мир, мы немедленно обнаружили, что у нас совершенно разный образ жизни и не так уж много общего.

Следующий, менее сильный всплеск произошел, когда мы поехали отдыхать в Будапешт. Отдых быстро подошел к концу, когда мы заметили, что наши романтические каникулы состоят из того, что мы примерно двадцать три часа в день ссоримся из-за мелочей.

Кривая наконец пересекает ось X в августе, когда я бросил ее и она ровно в полночь выставила меня, бездомного и нищего, из квартиры на улицы Беркли.

Читать дальше

Шрифт:

Интервал:

Закладка:

Сделать

Похожие книги на «Многочисленные Катерины»

Представляем Вашему вниманию похожие книги на «Многочисленные Катерины» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «Многочисленные Катерины»

Обсуждение, отзывы о книге «Многочисленные Катерины» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.