Навык в калибровке очень пригодился и команде Управления по делам ветеранов, оценивавшей проект повышения надежности информационной технологии. Команде нужно было понять, что она уже знает, а что остается неизвестным, и выяснить неопределенность, связанную с надежностью. Первоначальные оценки (все интервалы значений и приписанные им вероятности) отражают приблизительность имеющихся данных о рассматриваемых величинах. Эта неопределенность служит основой для следующих этапов: использования вероятностей в модели принятия решений и расчета стоимости информации.
Теперь, научившись вычислять калиброванные вероятности, вы знаете, как количественно рассчитать текущую неопределенность. Умение правильно оценивать калиброванные вероятности крайне важно на следующих этапах измерения. Из глав 6 и 7 вы узнаете, как использовать калиброванные оценки вероятности для определения риска и стоимости информации.
Глава 6. Оценка риска: введение в моделирование методом Монте-Карло
Лучше быть приблизительно правым, чем точно неправым.
Уоррен Баффетт
Мы установили различие между неопределенностью и риском. Первоначально оценка неопределенности величины сводится к присвоению нами неизвестным переменным калиброванных интервалов значений или вероятностей. При последовательных измерениях чего бы то ни было одновременно оценивается и неопределенность, при этом каждое следующее измерение все больше снижает ее.
Риск — это просто состояние неопределенности, которое влечет за собой возможный ущерб любого рода. Как правило, подразумевается, что этот ущерб довольно значителен. Владение методами калибровки позволяет точно рассчитывать первоначальную неопределенность с помощью диапазонов и вероятностей. То же можно сказать и о применении этих методов для оценки риска.
Приемы, которыми многие организации «измеряют» риск, нельзя назвать достаточно информативными. Методы оценки риска, о которых я собираюсь рассказать, хорошо знакомы актуариям, статистикам и финансовым аналитикам. Но некоторые наиболее популярные способы даже отдаленно не напоминают страховую статистику. Многие организации просто характеризуют риск как «высокий», «средний» и «низкий» или же оценивают его по пятибалльной шкале. Обнаруживая, что дело обстоит именно так, я иногда спрашиваю, насколько «средним» является данный риск. Вероятность 5 % понести убытки, превышающие 5 млн дол., — это какой риск: низкий, средний или высокий? Никто не знает. Что лучше — среднерисковые инвестиции с доходностью 15 % или высокорисковый вклад с доходностью 50 %? Опять никто не знает.
Чтобы доказать, почему подобные классификации не так полезны, как могли быть, я предлагаю участникам своих семинаров в следующий раз при оплате чеком (или через Интернет) страхового взноса за новую автомашину или дом написать в графе «сумма» вместо числа в долларах слово «средняя» и посмотреть, что из этого выйдет. Тем самым они сообщат своим страховщикам, что желают снизить риск до среднего значения. Скажет ли это страховщику что-нибудь конкретное и разумное? Думаю, что ничего, как и любому другому человеку.
Количественное выражение неопределенности с помощью интервалов, а не точных значений, определить которые невозможно, очевидно, имеет свои преимущества. При использовании интервалов значений и вероятностей не нужно делать допущения, в которых вы не уверены. Но точные значения имеют то преимущество, что их легко суммировать, вычитать, умножать и делить в электронной таблице. А можно ли выполнить подобные действия в электронной таблице, если вместо точных чисел есть только диапазоны? К счастью, это можно достаточно просто осуществить методом Монте-Карло, используя разнообразные компьютерные модели, разработанные специально для таких целей.
Наш учитель измерения Энрико Ферми одним из первых применил на практике то, что впоследствии было названо моделированием по методу Монте-Карло. Метод позволяет генерировать на компьютере большое число сценариев на основе вероятностных исходных данных. Для каждого сценария наугад выбираются конкретные значения каждой неизвестной переменной. Затем их подставляют в формулу для расчета исхода данного сценария. Обычно такие расчеты выполняют для тысяч сценариев.
Ферми использовал метод Монте-Карло для того, чтобы рассчитать поведение большого числа нейтронов. В 1930 г., начиная работу над данной проблемой, он осознавал, что ее нельзя решить обычными методами интегрального исчисления. Однако можно было присвоить некие вероятности определенным результатам при заданных условиях. Ученый понял, что можно взять наугад несколько таких ситуаций и выяснить, как будет себя вести большое число нейтронов в системе. В 1940-х и 1950-х годах несколько математиков продолжили работу над аналогичными проблемами ядерной физики и начали использовать компьютеры для составления случайных сценариев. Наибольшую известность получили труды Станислава Улама, Джона фон Нейманна и Николаса Метрополиса. Сначала они работали над созданием атомной бомбы (Манхэттенский проект), а позднее — водородной бомбы в Лос-Аламосе. По предложению Метрополиса Улам назвал свой метод компьютерного генерирования случайных сценариев методом Монте-Карло в честь своего дяди — азартного игрока [22] Станислав Улам. Приключения математика / Пер. с англ. М.: Регулярная и хаотическая динамика, 2001, 288 с.
.
Читать дальше