Только приступив к написанию этой книги, я попросил своих многочисленных знакомых сообщать мне об интересных решениях в области измерений, которые я смог бы использовать в качестве примеров из практики. Я сказал, что ищу «интересные примеры удачного решения трудных или даже казавшихся неразрешимыми задач измерения, при этом желательно, чтобы результаты оказались поразительными и заставили изменить первоначальное решение». Недостатка в предложениях не было, и я обсудил по телефону намного больше практических примеров, чем в конце концов включил в свою книгу. Однако я заметил, что многие аналитики, консультанты и бизнесмены, похоже, ставят знак равенства между проведением измерений и обоснованием проекта. Они не приводили примеров интересного использования результатов наблюдений для снижения неопределенности в связи с каким-то неизвестным показателем. Вместо этого они объясняли мне, как готовили обоснование своего любимого проекта.
Справедливости ради скажу, что анализ «затраты/выгоды» вполне может считаться разновидностью разложения на составляющие, о котором мы говорили в главе 8, и сам по себе способен снизить неопределенность без дальнейших измерений. В процессе обоснования проекта проблему разлагают на составляющие точно так же, как в свое время Ферми это делал своими вопросами. При этом не являясь сам по себе измерением, основанным на наблюдениях, процесс все же позволяет узнать что-то новое о том, с чем мы уже были знакомы. Но, как я отмечал ранее, согласно моему многолетнему опыту, при высокой стоимости информации об изучаемых переменных одно только разложение на составляющие достаточно снижает неопределенность всего в 25 % случаев. А чаще всего, если стоимость информации оправдывает усилия по снижению неопределенности, все равно требуются определенные эмпирические наблюдения.
Между тем, похоже, что единственный прием измерения, которым пользуются многие компании, — это разложение на составляющие (например, при обосновании проекта); применять эмпирические методы они даже не пытаются. Каждая переменная при этом представляет собой просто первоначальную оценку (одного эксперта либо целой рабочей группы) и всегда выражается конкретным значением, а не диапазоном, свидетельствующим о том, что точная ее величина неизвестна. Никакие опросы и эксперименты не проводятся; не применяются и методы, позволяющие уточнить субъективные суждения. Те, кто с таким энтузиазмом рассказывал мне об обосновании проекта как о примере проведения измерений, не смогли, сколько я ни просил об этом, назвать хотя бы один показатель, который использовался ими при анализе «затрат/выгод» и который был бы рассчитан в результате наблюдений реального мира.
Совсем иное поведение наблюдается, когда задача состоит в том, чтобы на этапе обоснования проекта определить точные значения, особенно когда эксперт участвует в нем и заинтересован в результате. Оно отличается от действий калиброванного эксперта, указывающего первоначальный 90-процентный доверительный интервал. Один или несколько собравшихся для анализа проекта специалистов рассматривают со всех точек зрения каждую оценку. Вынуждаемые обстоятельствами выбрать точные значения, несмотря на всю имеющуюся неопределенность и условность ситуации, они задаются вопросом: «Каким должно оказаться это значение, чтобы оно стало приемлемым для других и в то же время подтверждало правоту моей прежней точки зрения?» Это почти то же самое, как если бы мы использовали термины «консенсус» и «факт». Обсуждавшийся ранее эксперимент Эша со стадным эффектом — лишь один из недостатков подобного подхода.
Еще одна настораживающая тенденция в принятии решений менеджерами компаний — использование взвешенных показателей такого типа, когда и сами показатели, и присвоенные им веса — субъективные, произвольные величины, а не использовавшиеся Доузом z-значения. Как и обсуждавшиеся ранее простые линейные модели, такие методы могут поставить перед менеджером портфеля проектов задачу ранжировать их по категориям типа «организационный риск» или «стратегическое соответствие» и т. д.
Подобные методы в большинстве своем предполагают использование от 4 до 12 категорий оценки, а некоторые — больше 100. Обсуждаемому проекту обычно присваивают балл, например по пятибалльной шкале, для каждой категории. Сумму баллов затем умножают на весовой коэффициент (иногда тоже составляющий от 1 до 5), отражающий относительное значение данной категории. Обычно в компаниях используемые весовые коэффициенты стандартизируют, чтобы можно было оценивать проекты по сопоставимым критериям. Скорректированные на весовые коэффициенты баллы затем суммируют и получают общий показатель обсуждаемой программы.
Читать дальше