Carol A. Chapelle - The Concise Encyclopedia of Applied Linguistics

Здесь есть возможность читать онлайн «Carol A. Chapelle - The Concise Encyclopedia of Applied Linguistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Concise Encyclopedia of Applied Linguistics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Concise Encyclopedia of Applied Linguistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Offers a wide-ranging overview of the issues and research approaches in the diverse field of applied linguistics
 
Applied linguistics is an interdisciplinary field that identifies, examines, and seeks solutions to real-life language-related issues. Such issues often occur in situations of language contact and technological innovation, where language problems can range from explaining misunderstandings in face-to-face oral conversation to designing automated speech recognition systems for business. 
 includes entries on the fundamentals of the discipline, introducing readers to the concepts, research, and methods used by applied linguists working in the field. This succinct, reader-friendly volume offers a collection of entries on a range of language problems and the analytic approaches used to address them.
This abridged reference work has been compiled from the most-accessed entries from 
 
 (www.encyclopediaofappliedlinguistics.com)
the more extensive volume which is available in print and digital format in 1000 libraries spanning 50 countries worldwide. Alphabetically-organized and updated entries help readers gain an understanding of the essentials of the field with entries on topics such as multilingualism, language policy and planning, language assessment and testing, translation and interpreting, and many others. 
Accessible for readers who are new to applied linguistics, 

Includes entries written by experts in a broad range of areas within applied linguistics Explains the theory and research approaches used in the field for analysis of language, language use, and contexts of language use Demonstrates the connections among theory, research, and practice in the study of language issues Provides a perfect starting point for pursuing essential topics in applied linguistics Designed to offer readers an introduction to the range of topics and approaches within the field
 is ideal for new students of applied linguistics and for researchers in the field.

The Concise Encyclopedia of Applied Linguistics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Concise Encyclopedia of Applied Linguistics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Other ASR Applications in Applied Linguistics

There are other areas in which ASR has been used by applied linguists: reading instruction and the use of ASR in dialogue systems used with language‐learning software. One use of ASR that seems to have been particularly successful has been in teaching children to read. Mostow and Aist (1999) found that ASR used in conjunction with an understanding of teacher–student classroom behavior was successful in teaching oral reading skills and word recognition. In a later study, Poulsen, Hastings, and Allbritton (2007) found that reading interventions for young learners of English were far more effective when an ASR system was included.

Another use of ASR technology is in spoken CALL dialogue systems. If a software program for practicing spoken language provides the first line of a dialogue, learners give one of two responses. If these responses are dissimilar, the ASR system can recognize which sentence has been spoken (even with pronunciation errors or missing words). The computer can then respond, allowing the learner to respond again from a menu of possible responses (see Bernstein, Najmi, & Ehsani, 1999; Harless et al., 1999). O'Brien (2006) reviews a number of such programs. With the recent advent of deep learning systems, which take advantage of established techniques for modeling phone recognition and for making use of spectral information from speech, it is likely that machine feedback will soon become more accurate and flexible in L2 speech recognition.

Future Directions

Automatic speech recognition holds great promise for applied linguistics. ASR research and usability testing is happening in areas likely to impact applied linguistics (e.g., Anderson, Davidson, Morton, & Jack, 2008). For example, the International Conference on Acoustics, Speech and Signal Processing (ICASSP); the annual INTERSPEECH conference (held through the International Speech Communication Association, or ISCA); and the ISCA Special Interest Group on Speech and Language Technology in Education (SlaTE; see http://hstrik.ruhosting.nl/slate/) bring together those working in areas that will eventually influence linguistic applications.

The connections between ASR and text‐to‐speech software have been insufficiently explored in applied linguistic circles, but both are regularly examined in cutting‐edge work tied to other areas of speech sciences. We expect that the ubiquity of mobile devices that use ASR‐based applications will eventually allow L2 learners to practice their L2 speaking skills and receive effective feedback on their pronunciation. Further progress in ASR will likely result in interactive language‐learning systems capable of providing authentic interaction opportunities with real or virtual interlocutors. These systems will also become able to produce specific, corrective feedback to learners on their pronunciation errors. Additionally, the development of noise‐robust ASR technologies will allow language learners to use ASR‐based products in noise‐prone environments such as classrooms, transportation, and other public places. Finally, the performance of ASR systems will improve as emotion recognition and visual speech recognition (based, for instance, on a Webcam's capturing of learners' lip movements and facial expressions) become more effective and widespread.

SEE ALSO:Computer‐Assisted Pronunciation Teaching; Foreign Accent; Innovation in Language Teaching and Learning; Pronunciation Assessment; Pronunciation Teaching Methods and Techniques

References

1 Anagnostopoulos, C.‐N., Iliou, T., & Glannoukos, I. (2015). Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011. Artificial Intelligence Review, 43(2), 155–77.

2 Anderson, J. N., Davidson, N., Morton, H., & Jack, M. A. (2008). Language learning with interactive virtual agent scenarios and speech recognition: Lessons learned. Computer Animation and Virtual Worlds, 19, 605–19.

3 Bernstein, J., Najmi, A., & Ehsani, F. (1999). Subarashii: Encounters in Japanese spoken language education. CALICO Journal, 16(3), 361–84.

4 Burileanu, D. (2008). Spoken language interfaces for embedded applications. In D. Gardner‐Bonneau & H. E. Blanchard (Eds.), Human factors and voice interactive systems (2nd ed., pp. 135–61). Norwell, MA: Springer.

5 Cucchiarini, C., Neri, A., & Strik, H. (2009). Oral proficiency training in Dutch L2: The contribution of ASR‐based corrective feedback. Speech Communication, 51(10), 853–63.

6 Dalby, J., & Kewley‐Port, D. (1999). Explicit pronunciation training using automatic speech recognition technology. CALICO Journal, 16(3), 425–45.

7 Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–42.

8 Deng, L., Li, J., Huang, J.‐T., Yao, K., Yu, D., Seide, F., . . . & Acero, A. (2013). Recent advances in deep learning for speech research at Microsoft. In Acoustics, Speech and Signal Processing (ICASSP), IEEE International Conference (pp. 8604–8). Piscataway, NJ: IEEE.

9 Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), 197–387.

10 Derwing, T. M., Munro, M. J., & Carbonaro, M. (2000). Does popular speech recognition software work with ESL speech? TESOL Quarterly, 34, 592–603.

11 Duan, R., Kawahara, T., Dantsuji, M., & Zhang, J. (2017). Effective articulatory modeling for pronunciation error detection of L2 learner without non‐native training data. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference (pp. 5815–19). Piscataway, NJ: IEEE.

12 Eskenazi, M. (1999). Using a computer in foreign language pronunciation training: What advantages? CALICO Journal, 16(3), 447–69.

13 Forgie, J. W., & Forgie, C. D. (1959). Results obtained from a vowel recognition computer program. The Journal of the Acoustical Society of America, 31(11), 1480–9.

14 Harless, W., Zier, M., & Duncan, R. (1999). Virtual dialogues with native speakers: The evaluation of an interactive multimedia method. CALICO Journal, 16(3), 313–37.

15 Lai, J., Karat, C.‐M., & Yankelovich, N. (2008). Conversational speech interfaces and technologies. In A. Sears & J. A. Jacko (Eds.), The human‐computer interaction handbook: Fundamentals, evolving technologies, and emerging applications (2nd ed., pp. 381–91). New York, NY: Erlbaum.

16 Liakin, D., Cardoso, W., & Liakina, N. (2017). The pedagogical use of mobile speech synthesis (TTS): Focus on French liaison. Computer Assisted Language Learning, 30(3–4), 348–65.

17 Liew, A., & Wang, S. (2009). Visual speech recognition: Lip segmentation and mapping. Hershey, PA: Medical Information Science Reference.

18 Markowitz, J. A. (1996). Using speech recognition. Upper Saddle River, NJ: Prentice Hall.

19 Martin, T. B., Nelson, A. L., & Zadell, H. J. (1964). Speech recognition by feature abstraction techniques (Technical Report AL‐TDR‐64‐176). Wright‐Patterson Airforce Base, OH: Air Force Avionics Lab.

20 McCrocklin, S. M. (2016). Pronunciation learner autonomy: The potential of automatic speech recognition. System, 57, 25–42.

21 Mitra, V., Franco, H., Stern, R., Van Hout, J., Ferrer, L., Graciarena, M., . . . & Hansen, J. H. L. (2017). Robust features in deep learning‐based speech recognition. In S. Watanabe, M. Delcroix, F. Metze, & J. R. Hershey (Eds.), New era of robust speech recognition: Exploiting deep learning (pp. 187–217). Cham, Switzerland: Springer.

22 Mohamed, A., Dahl, G. E., & Hinton, G. (2012). Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 14–22.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Concise Encyclopedia of Applied Linguistics»

Представляем Вашему вниманию похожие книги на «The Concise Encyclopedia of Applied Linguistics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Concise Encyclopedia of Applied Linguistics»

Обсуждение, отзывы о книге «The Concise Encyclopedia of Applied Linguistics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x