Chris Jones - End-to-end Data Analytics for Product Development

Здесь есть возможность читать онлайн «Chris Jones - End-to-end Data Analytics for Product Development» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

End-to-end Data Analytics for Product Development: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «End-to-end Data Analytics for Product Development»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An interactive guide to the statistical tools used to solve problems during product and process innovation End to End Data Analytics for Product Development The book reviews information on feasibility screening, formulation and packaging development, sensory tests, and more. The authors – noted experts in the field – explore relevant techniques for data analytics and present the guidelines for data interpretation. In addition, the book contains information on process development and product validation that can be optimized through data understanding, analysis and validation. The authors present an accessible, hands-on approach that uses MINITAB and JMP software. The book:
• Presents a guide to innovation feasibility and formulation and process development
• Contains the statistical tools used to solve challenges faced during product innovation and feasibility
• Offers information on stability studies which are common especially in chemical or pharmaceutical fields
• Includes a companion website which contains videos summarizing main concepts
Written for undergraduate students and practitioners in industry, 
offers resources for the planning, conducting, analyzing and interpreting of controlled tests in order to develop effective products and processes.

End-to-end Data Analytics for Product Development — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «End-to-end Data Analytics for Product Development», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

By observing the frequency distribution of a quantitative discrete or continuous variable, several shapes may be detected related also to the presence or absence of symmetry (Figures 1.3 and 1.4).

Figure 13 Shapes of distributions symmetric and skewed distributions - фото 28

Figure 1.3 Shapes of distributions (symmetric and skewed distributions).

Figure 14 Other shapes of distributions If one side of the histogram or bar - фото 29

Figure 1.4 Other shapes of distributions.

If one side of the histogram (or bar chart for quantitative discrete variables) is close to being a mirror image of the other, then the data are fairly symmetric (a). Middle values are more frequent, while low and high values are less frequent. If data are not symmetric, they may be skewed to the right (b) or skewed to the left (c). In (b) low and middle values are more frequent than high values. In (c) high and middle values are more frequent than low values.

If histograms (or bar charts for quantitative discrete variables) show ever‐decreasing or ever‐increasing frequencies, the distribution is said to be J‐shaped (d). If frequencies are decreasing on the left side of the graph and increasing on the right side, the distribution is said to be U‐shaped (e). Sometimes there are values that do not fall near any others. These extremely high or low values are called outliers (f).

Stat Tool 1.6 Measures of Central Tendency: Mean and Median картинка 30

When quantitative data distributions tend to concentrate around certain values, we can try to locate these values by calculating the so‐called measures of central tendency : the mean and the median . These measures describe the area of the distribution where most values occur.

The mean is the sum of all data divided by the number of data. It represents the “balance point” of a set of values.

The median is the middle value in a sorted list of data It divides data in - фото 31

The median is the middle value in a sorted list of data. It divides data in half: 50% of data are greater than the median, 50% are less than the median.

For symmetric data mean and median tend to be close in value Figure 15 - фото 32

For symmetric data, mean and median tend to be close in value (Figure 1.5):

Figure 15 Mean and median in symmetric distributions In skewed data or data - фото 33

Figure 1.5 Mean and median in symmetric distributions.

In skewed data or data with extreme values , mean and median can be quite different. Usually for such data, the median tends to be a better indicator of the central tendency rather than the mean, because while the mean tends to be pulled in the direction of the skew, the median remains closer to the majority of the observations (Figure 1.6).

Figure 16 Mean and median in skewed distributions Stat Tool 17 Measures - фото 34

Figure 1.6 Mean and median in skewed distributions.

Stat Tool 1.7 Measures of Non‐Central Tendency: Quartiles картинка 35

Particularly when numeric data do not tend to concentrate around a unique central value (e.g. fairly uniform distributions), more than one descriptive measure is needed to summarize the data distribution. These measures are called quantiles .

The most common quantiles are quartiles which are three values first quartile - фото 36

The most common quantiles are quartiles, which are three values (first quartile Q 1, second quartile Q 2, and third quartile Q 3) corresponding to specific positions in the sorted list of data values (Figure 1.7).

75% of the data are less than Q3 and 25% are greater than Q3.

50% of the data are less than Q2 and 50% are greater than Q2.

25% of the data are less than Q1 and 75% are greater than Q1.

Figure 17 Quartiles The first quartile is also known as the 25th percentile - фото 37

Figure 1.7 Quartiles.

The first quartile is also known as the 25th percentile, the median as the 50th percentile, and the third quartile as the 75th percentile.

Stat Tool 1.8 Measures of Variability: Range and Interquartile Range Variability refers to how spread out a set of datavalues is Consider the - фото 38

Variability refers to how spread out a set of datavalues is.

Consider the following graphs see Figure 18 The two data distributions are - фото 39

Consider the following graphs (see Figure 1.8):

The two data distributions are quite different in terms of variability: the graph on the left shows more densely packed values (less variability), while the graph on the right reveals more spread out data (higher variability).

The terms variability, spread, variation, and dispersion are synonyms, and refer to how spread out a distribution is.

Figure 18 Frequency distributions and variability How can the spread of a - фото 40

Figure 1.8 Frequency distributions and variability.

How can the spread of a set of numeric values be quantified?

The range , commonly represented as R, is a simple way to describe the spread of data values. It is the difference between the maximum value and the minimum value in a data set. The range can also be represented as the interval: (minimum value; maximum value).

A large range value (or a wide interval) indicates greater dispersion in the data. A small range value (or a narrow interval) indicates that there is less dispersion in the data.

Note that the range only uses two data values. For this reason, it is most useful in representing dispersion when data doesn't include outliers.

A second measure of variation is the interquartile range , commonly represented as IQR. It is the difference between the third quartile Q 3and the first quartile Q 1in a data set. IQR can also be represented as the interval: (Q 1; Q 3). Fifty percent of the data are within this range: as the spread of these data increases, the IQR becomes larger.

The IQR is not affected by the presence of outliers.

Stat Tool 1.9 Measures of Variability: Variance and Standard Deviation картинка 41

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «End-to-end Data Analytics for Product Development»

Представляем Вашему вниманию похожие книги на «End-to-end Data Analytics for Product Development» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «End-to-end Data Analytics for Product Development»

Обсуждение, отзывы о книге «End-to-end Data Analytics for Product Development» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x