Cole Stryker - Smarter Data Science

Здесь есть возможность читать онлайн «Cole Stryker - Smarter Data Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Smarter Data Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Smarter Data Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how. 
Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive.
helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments.
When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise.
By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements:
Improving time-to-value with infused AI models for common use cases Optimizing knowledge work and business processes Utilizing AI-based business intelligence and data visualization Establishing a data topology to support general or highly specialized needs Successfully completing AI projects in a predictable manner Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.

Smarter Data Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Smarter Data Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

14 CHAPTER 8: Valuing Data with Statistical Analysis and Enabling Meaningful Access Deriving Value: Managing Data as an Asset Accessibility to Data: Not All Users Are Equal Providing Self-Service to Data Access: The Importance of Adding Controls Ranking Datasets Using a Bottom-Up Approach for Data Governance How Various Industries Use Data and AI Benefiting from Statistics Summary

15 CHAPTER 9: Constructing for the Long-Term The Need to Change Habits: Avoiding Hard-Coding Extending the Value of Data Through AI Polyglot Persistence Benefiting from Data Literacy Summary

16 CHAPTER 10: A Journey's End: An IA for AI Development Efforts for AI Essential Elements: Cloud-Based Computing, Data, and Analytics Driving Action: Context, Content, and Decision-Makers Keep It Simple The Silo Is Dead; Long Live the Silo Taxonomy: Organizing Data Zones Capabilities for an Open Platform Summary

17 Appendix: Glossary of Terms

18 Index

19 End User License Agreement

List of Illustrations

1 Chapter 1Figure 1-1: The AI Ladder to achieve a full complement of data and analytics...Figure 1-2: The ladder is part of a repetitive climb to continual improvemen...Figure 1-3: Current state ⇦ future state ⇦ current stateFigure 1-4: Ends and means model

2 Chapter 2Figure 2-1: Trust matrixFigure 2-2: Breadth and depth sliversFigure 2-3: GradingFigure 2-4: Data and AI democratizationFigure 2-5: Recognizing that the ability to skillfully ask questions is the ...

3 Chapter 3Figure 3-1: Monitors at Mission Control Center for the International Space S...Figure 3-2: A closer viewFigure 3-3: Monitors in a hospital emergency roomFigure 3-4: An electrocardiogram pattern showing normal and abnormal heartbe...Figure 3-5: Data governanceFigure 3-6: An ontological modelFigure 3-7: InferenceFigure 3-8: Blood test results showing normalcy, part AFigure 3-9: Blood test results showing normalcy, part BFigure 3-10: Recognizing preconditions

4 Chapter 4Figure 4-1: Reviewing atomic dataFigure 4-2: Simplified information architecture for an EDWFigure 4-3: YARN architecture

5 Chapter 5Figure 5-1: Starter set zonesFigure 5-2: Consistent to ActiveFigure 5-3: Consistent to InactiveFigure 5-4: Consistent to CISCO_INACTIVE_INDFigure 5-5: Consistent to StatusFigure 5-6: Consistent to WorksheetsFigure 5-7: Consistent to Implied MeaningFigure 5-8: Consistent to MetadataFigure 5-9: Misrepresenting the nature of data governanceFigure 5-10: Core elements of a data topologyFigure 5-11: Primitive zone typesFigure 5-12: Data lakes, data ponds, and data puddles

6 Chapter 6Figure 6-1: ChallengesFigure 6-2: Seven practicesFigure 6-3: Building to an MVPFigure 6-4: DevOps shift-left approachFigure 6-5: Core capabilities for DevOps and MLOpsFigure 6-6: Identifying DataOps stakeholdersFigure 6-7: Building blocks for AIOps

7 Chapter 7Figure 7-1: Data to wisdomFigure 7-2: Dialing data governance

8 Chapter 8Figure 8-1: Data value chainFigure 8-2: SkewnessFigure 8-3: KurtosisFigure 8-4: Identifying outliersFigure 8-5: Gaussian distributionFigure 8-6: Gaussian histogram plotFigure 8-7: Gaussian distribution with low and high variance

9 Chapter 9Figure 9-1: Caesar's Entertainment operating company asset valuesFigure 9-2: What color are clouds?Figure 9-3: Digitization misses more data than is actually collected.

10 Chapter 10Figure 10-1: Cloud topographyFigure 10-2: Compute and storage capabilitiesFigure 10-3: Analytic intensityFigure 10-4: Communication flowsFigure 10-5: Flight paths for model executionFigure 10-6: Driving prediction, automation, and optimizationFigure 10-7: Transitive closure and access privilegesFigure 10-8: A proliferation of lines serves to highlight the need for line ...Figure 10-9: Taxonomic representationFigure 10-10: Virtualized data zones

Guide

1 Cover

2 Table of Contents

3 Begin Reading

Pages

1 i

2 ii

3 iii

4 iv

5 v

6 vi

7 vii

8 ix

9 xi

10 xix

11 xx

12 xxi

13 xxiii

14 xxiv

15 xxv

16 xxvi

17 1

18 2

19 3

20 4

21 5

22 6

23 7

24 8

25 9

26 10

27 11

28 12

29 13

30 14

31 15

32 16

33 17

34 18

35 19

36 20

37 21

38 22

39 23

40 24

41 25

42 26

43 27

44 28

45 29

46 30

47 31

48 32

49 33

50 35

51 36

52 37

53 38

54 39

55 40

56 41

57 42

58 43

59 44

60 45

61 46

62 47

63 48

64 49

65 50

66 51

67 52

68 53

69 54

70 55

71 57

72 58

73 59

74 60

75 61

76 62

77 63

78 64

79 65

80 66

81 67

82 68

83 69

84 70

85 71

86 72

87 73

88 74

89 75

90 76

91 77

92 78

93 79

94 80

95 81

96 82

97 83

98 84

99 85

100 87

101 88

102 89

103 90

104 91

105 92

106 93

107 94

108 95

109 96

110 97

111 98

112 99

113 100

114 101

115 102

116 103

117 104

118 105

119 106

120 107

121 108

122 109

123 110

124 111

125 112

126 113

127 114

128 115

129 116

130 117

131 118

132 119

133 121

134 122

135 123

136 124

137 125

138 126

139 127

140 128

141 129

142 130

143 131

144 132

145 133

146 134

147 135

148 136

149 137

150 138

151 139

152 140

153 141

154 142

155 143

156 144

157 145

158 147

159 148

160 149

161 150

162 151

163 152

164 153

165 154

166 155

167 156

168 157

169 158

170 159

171 160

172 161

173 162

174 163

175 164

176 165

177 166

178 167

179 168

180 169

181 170

182 171

183 172

184 173

185 175

186 176

187 177

188 178

189 179

190 180

191 181

192 182

193 183

194 184

195 185

196 186

197 187

198 188

199 189

200 190

201 191

202 192

203 193

204 194

205 195

206 196

207 197

208 198

209 199

210 200

211 201

212 202

213 203

214 204

215 205

216 206

217 207

218 208

219 209

220 210

221 211

222 212

223 213

224 214

225 215

226 216

227 217

228 218

229 219

230 220

231 221

232 223

233 224

234 225

235 226

236 227

237 228

238 229

239 230

240 231

241 232

242 233

243 234

244 235

245 236

246 237

247 238

248 239

249 240

250 241

251 242

252 243

253 244

254 245

255 246

256 247

257 248

258 249

259 250

260 251

261 252

262 253

263 254

264 255

265 256

266 257

267 258

268 259

269 260

270 261

271 263

272 264

273 265

274 266

275 267

276 269

277 270

278 271

279 272

280 273

281 274

282 275

283 276

284 277

285 278

286 279

Praise For This Book

The authors have obviously explored the paths toward an efficient information architecture. There is value in learning from their experience. If you have responsibility for or influence over how your organization uses artificial intelligence you will find Smarter Data Science an invaluable read. It is noteworthy that the book is written with a sense of scope that lends to its credibility. So much written about AI technologies today seems to assume a technical vacuum. We are not all working in startups! We have legacy technology that needs to be considered. The authors have created an excellent resource that acknowledges that enterprise context is a nuanced and important problem. The ideas are presented in a logical and clear format that is suitable to the technologist as well as the businessperson.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Smarter Data Science»

Представляем Вашему вниманию похожие книги на «Smarter Data Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Smarter Data Science»

Обсуждение, отзывы о книге «Smarter Data Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x