Jane M. Horgan - Probability with R
Здесь есть возможность читать онлайн «Jane M. Horgan - Probability with R» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Probability with R
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Probability with R: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Probability with R»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
is used throughout the text, not only as a tool for calculation and data analysis, but also to illustrate concepts of probability and to simulate distributions. The examples in
cover a wide range of computer science applications, including: testing program performance; measuring response time and CPU time; estimating the reliability of components and systems; evaluating algorithms and queuing systems.
Chapters cover: The R language; summarizing statistical data; graphical displays; the fundamentals of probability; reliability; discrete and continuous distributions; and more.
This second edition includes:
improved R code throughout the text, as well as new procedures, packages and interfaces; updated and additional examples, exercises and projects covering recent developments of computing; an introduction to bivariate discrete distributions together with the R functions used to handle large matrices of conditional probabilities, which are often needed in machine translation; an introduction to linear regression with particular emphasis on its application to machine learning using testing and training data; a new section on spam filtering using Bayes theorem to develop the filters; an extended range of Poisson applications such as network failures, website hits, virus attacks and accessing the cloud; use of new allocation functions in R to deal with hash table collision, server overload and the general allocation problem. The book is supplemented with a Wiley Book Companion Site featuring data and solutions to exercises within the book.
Primarily addressed to students of computer science and related areas,
is also an excellent text for students of engineering and the general sciences. Computing professionals who need to understand the relevance of probability in their areas of practice will find it useful.
: Area Under the CurveFigure 15.3 The pdf and cdf of the Uniform [2, 5] Random VariableFigure 15.4 The Uniform [0,1] pdf and cdfFigure 15.5 Uniform Probabilities:
Figure 15.6 Uniform Probabilities:
Figure 15.7 Empirical Probability Density Function
, and
Figure 16.2 Area under the Exponential CurveFigure 16.3 Reliability of a workstation with Failure Rate
= 0.5Figure 16.4 Simulated and Actual Distributions of Job Submissions to a Server,...Figure 16.5 Simulated Exponential Distribution for
Compared with the Simulat...Figure 16.6 Interarrival Times Uniform in [0, 0.5]Figure 16.7 Simulated Uniform Waiting Time after
Compared with the Original
1Figure 17.3 Queue Pattern with Traffic Intensity = 1Figure 17.4 Queue Pattern when the Traffic Intensity
Figure 17.5 Queue Length with
and
, 4 and
Figure 17.6 Queue Length with
and
Figure 17.7 Queue Pattern with Four Engineers Submitting to One ProcessorFigure 17.8 Queue Length over 10,000 Simulations
and
Figure 18.5 The Density of the Standard Normal DistributionFigure 18.6 Normal Approximation to the Binomial
Figure 18.7 Binomial and Normal Densities with
, for Varying Values of
Figure 18.8 The Binomial Probabilities with
, for Varying Values of
Figure 18.9 The Normal Approximation to the Binomial Distribution with
and V...Figure 18.10 Normal Approximation to the Poisson distribution with
Figure 18.11 Normal Approximation to the Poisson Distribution with Varying Val...Figure 18.12 The
(10,000, 100) pdf Superimposed on the Poisson Probabilities ...
, Together with the Tail Probabilities
fo...Figure 20.2 The Markov Bound with
, Together with the Tail Probabilities,
f...