Doruk Senkal - Whole-Angle MEMS Gyroscopes

Здесь есть возможность читать онлайн «Doruk Senkal - Whole-Angle MEMS Gyroscopes» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Whole-Angle MEMS Gyroscopes: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Whole-Angle MEMS Gyroscopes»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Presents the mathematical framework, technical language, and control systems know-how needed to design, develop, and instrument micro-scale whole-angle gyroscopes
Whole-Angle Gyroscopes: Challenges and Opportunities
Whole-Angle Gyroscopes

Whole-Angle MEMS Gyroscopes — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Whole-Angle MEMS Gyroscopes», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In the whole‐angle mechanization, the two modes of the gyroscope are allowed to freely oscillate and external forcing is only applied to null the effects of imperfections such as damping and asymmetry. In this mode of operation the mechanical element acts as a “mechanical integrator” of angular velocity, resulting in an angle measuring gyroscope, also known as a Rate Integrating Gyroscope (RIG).

Whole‐angle gyroscope architectures can be divided into three main categories based on the geometry of the resonator element: (i) lumped mass systems, (ii) ring/disk systems, and (iii) micro‐wineglasses. Ring/disk systems are further divided into three categories: (i) rings, (ii) concentric ring systems, and (iii) disks. Whereas, micro‐wineglasses are divided into two categories according to fabrication technology: surface micro‐machined and bulk micro‐machined wineglass gyroscope architectures, Figure 1.2[2].

String and bar resonators can also be instrumented to be used as whole‐angle gyroscopes, even though these types of mechanical elements are typically not used at micro‐scale due to limited transduction capacity. In principle, any axisymmetric elastic member can be instrumented to function as a whole‐angle gyroscope.

1.2 Generalized CVG Errors

Gyroscopes are susceptible to a variety of error sources caused by a combination of inherent physical processes as well as external disturbances induced by the environment.

Error sources in a single axis rate gyroscope can be generalized according to the following formula:

(1.1) where is the measured gyroscope output is scale factor error - фото 56

where картинка 57is the measured gyroscope output, картинка 58is scale factor error, картинка 59is bias error, and is noise Without loss of generality for a wholeangle gyroscope the error - фото 60is noise. Without loss of generality, for a whole‐angle gyroscope the error sources can be written as:

(1.2) Figure 12 Microrate integrating gyroscope MRIG architectures where - фото 61

Figure 12 Microrate integrating gyroscope MRIG architectures where is the - фото 62

Figure 1.2 Micro‐rate integrating gyroscope (MRIG) architectures.

where картинка 63is the measured gyroscope output, corresponding to total angular read‐out, including the actual angle of rotation, errors in scale factor, bias, and noise.

1.2.1 Scale Factor Errors

Scale factor (or sensitivity) errors represent a deviation in gyroscope sensitivity from expected values, which results in a nonunity gain between “true” angular rate and “perceived” angular rate. Scale factor errors can be caused by either an error in initial scale factor calibration or a drift in scale factor postcalibration due to a change in environmental conditions, such as a change in temperature or supply voltages, application of external mechanical stresses to the sensing element, or aging effects internal to the sensor, such as a change in cavity pressure of the vacuum packaged sensing element.

1.2.2 Bias Errors

Bias (or offset) errors can be summarized as the deviation of time averaged gyroscope output from zero when there is no angular rate input to the sensor. Aside from initial calibration errors, bias errors can be caused by a change in environment conditions. Examples include a change in temperature, supply voltages or cavity pressure, aging of materials, and application of external mechanical stresses to the sensing element. An additional source of bias errors is external body loads, such as quasi‐static acceleration, as well as vibration.

1.2.3 Noise Processes

Noise in gyroscopes can be grouped under white noise, flicker ( картинка 64) noise, and quantization noise. The most common numerical tool for representing gyroscope noise processes is Allan Variance.

1.2.3.1 Allan Variance

Originally created to analyze frequency stability of clocks and oscillators, Allan Variance analysis is also widely used to represent various noise processes present in inertial sensors, such as gyroscopes [3]. Allan Variance analysis consists of data acquisition of gyroscope output over a period of time at zero rate input and constant temperature. This is followed by binning the data into groups of different integration times:

(1.3) where is the sampling time is the sample number and - фото 65

where картинка 66is the sampling time, картинка 67is the sample number, and is the bin size The uncertainty between bins of same integration times is - фото 68is the bin size. The uncertainty between bins of same integration times is calculated using ensemble average:

(1.4) Finally the calculated uncertainty with respect to integration time - фото 69

Finally, the calculated uncertainty картинка 70with respect to integration time ( картинка 71) is plotted to reveal information about various noise processes within the gyroscope, Figure 1.3. Sections of the Allan Variance curve and their physical meaning is summarized below [3]:

Quantization noise is due to the conversion of gyroscope output from analog (continuous) signal to digital (countable) signal by Analog‐to‐Digital Converters (quantization). Quantization noise has a slope of on the Allan variance graph.

Angle Random Walk (ARW) is caused by white thermomechanical and thermoelectrical noise within the gyroscope, shows up with a slope of . It is usually reported using units (degrees per square root of hour) or (millidegrees per second per square root of hertz).

Rate Random Walk (RRW) is the random drift term within the gyroscope, shows up with a slope of opposite of ARW.

Bias instability is the lowest point of the Allan variance curve, shows up with a slope of zero. It represents the minimum detectable rate input within the gyroscope and is reported using units (degrees per hour) or (millidegrees per second). Bias instability is limited by a combination of flicker () noise, ARW, and RRW. Figure 1.3 Sample Allan variance analysis of gyroscope output, showing error in gyroscope output (deg/h or deg/s)with respect to integration time (s).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Whole-Angle MEMS Gyroscopes»

Представляем Вашему вниманию похожие книги на «Whole-Angle MEMS Gyroscopes» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Whole-Angle MEMS Gyroscopes»

Обсуждение, отзывы о книге «Whole-Angle MEMS Gyroscopes» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x