54 54 Chandrasekhar, A., Alluri, N.R., Saravanakumar, B. et al. (2017). A microcrystalline cellulose ingrained polydimethylsiloxane triboelectric nanogenerator as a self‐powered locomotion detector. J. Mater. Chem. C 5: 1810.
55 55 Peng, J., Zhang, H., Zheng, Q. et al. (2017). A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9: 1428.
56 56 Yao, C., Yin, X., Yu, Y. et al. (2017). Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27: 1700794.
57 57 Šutka, A., Ruža, J., Järvekülg, M. et al. (2018). Triboelectric nanogenerator based on immersion precipitation derived highly porous ethyl cellulose. J. Electrostat. 92: 1.
58 58 He, X., Zou, H., Geng, Z. et al. (2018). A hierarchically nanostructured cellulose fiber‐based triboelectric nanogenerator for self‐powered healthcare products. Adv. Funct. Mater. 28: 1805540.
59 59 Oh, H., Kwak, S.S., Kim, B. et al. (2019). Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv. Funct. Mater.
60 60 Qian, C., Li, L., Gao, M. et al. (2019). All‐printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi‐functional sensors. Nano Energy 63: 103885.
61 61 Zhao, K., Wang, Z.L., and Yang, Y. (2016). Self‐powered wireless smart sensor node enabled by an ultrastable, highly efficient, and superhydrophobic‐surface‐based triboelectric nanogenerator. ACS Nano 10: 9044.
62 62 Dudem, B., Huynh, N.D., Kim, W. et al. (2017). Nanopillar‐array architectured PDMS‐based triboelectric nanogenerator integrated with a windmill model for effective wind energy harvesting. Nano Energy 42: 269.
63 63 Guo, H., Chen, J., Tian, L. et al. (2014). Airflow‐induced triboelectric nanogenerator as a self‐powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 6: 17184.
64 64 Wang, M., Zhang, N., Tang, Y. et al. (2017). Single‐electrode triboelectric nanogenerators based on sponge‐like porous PTFE thin films for mechanical energy harvesting and self‐powered electronics. J. Mater. Chem. A 5: 12252.
65 65 Zhao, P., Soin, N., Prashanthi, K. et al. (2018). Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high‐performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 10: 5880.
66 66 Kang, H., Buchman, J.T., Rodriguez, R.S. et al. (2018). Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities. Chem. Rev. 119: 664.
67 67 Jiang, Q., Chen, B., and Yang, Y. (2018). Wind‐driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1: 4269.
68 68 Cheon, S., Kang, H., Kim, H. et al. (2018). High‐performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv. Funct. Mater. 28: 1703778.
69 69 Jiang, Q., Chen, B., Zhang, K., and Yang, Y. (2017). Ag nanoparticle‐based triboelectric nanogenerator to scavenge wind energy for a self‐charging power unit. ACS Appl. Mater. Interfaces 9: 43716.
70 70 Lee, S., Ko, W., Oh, Y. et al. (2015). Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 12: 410.
71 71 Chun, J., Kim, J.W., Jung, W.‐s. et al. (2015). Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 8: 3006.
72 72 Zhang, Z., Chen, Y., Debeli, D.K., and Guo, J.S. (2018). Facile method and novel dielectric material using a nanoparticle‐doped thermoplastic elastomer composite fabric for triboelectric nanogenerator applications. ACS Appl. Mater. Interfaces 10: 13082.
73 73 Taneda, S. (1968). Waving motions of flags. J. Phys. Soc. Jpn. 24: 392.
74 74 Ahmed, A., Hassan, I., Hedaya, M. et al. (2017). Farms of triboelectric nanogenerators for harvesting wind energy: a potential approach towards green energy. Nano Energy 36: 21.
75 75 Liu, X., Zhao, K., and Yang, Y. (2018). Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53: 622.
76 76 Chen, S., Gao, C., Tang, W. et al. (2015). Self‐powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 14: 217.
77 77 Zhao, X., Chen, B., Wei, G. et al. (2019). Polyimide/graphene nanocomposite foam‐based wind‐driven triboelectric nanogenerator for self‐powered pressure sensor. Adv. Mater. Technol. 4: 1800723.
78 78 Chen, B., Yang, Y., and Wang, Z.L. (2018). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8: 1702649.
1 *Corresponding author: yayang@binn.cas.cn
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.