Sindo Kou - Welding Metallurgy

Здесь есть возможность читать онлайн «Sindo Kou - Welding Metallurgy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Welding Metallurgy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Welding Metallurgy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the extraordinary progress that welding metallurgy has experienced over the last two decades Welding Metallurgy, 3rd Edition Dr. Kou provides the reader with hundreds of citations to papers and articles that will further enhance the reader’s knowledge of this voluminous topic. Undergraduate students, graduate students, researchers and mechanical engineers will all benefit spectacularly from this comprehensive resource.
The new edition includes new theories/methods of Kou and coworkers regarding:
· Predicting the effect of filler metals on liquation cracking
· An index and analytical equations for predicting susceptibility to solidification cracking
· A test for susceptibility to solidification cracking and filler-metal effect
· Liquid-metal quenching during welding
· Mechanisms of resistance of stainless steels to solidification cracking and ductility-dip cracking
· Mechanisms of macrosegregation
· Mechanisms of spatter of aluminum and magnesium filler metals,
· Liquation and cracking in dissimilar-metal friction stir welding,
· Flow-induced deformation and oscillation of weld-pool surface and ripple formation
· Multicomponent/multiphase diffusion bonding
Dr. Kou’s
has been used the world over as an indispensable resource for students, researchers, and engineers alike. This new
is no exception.

Welding Metallurgy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Welding Metallurgy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

10 Chapter 17Table 17.1 Compositions of aluminum alloys.Table 17.2 Compositions of heat treatable nickel‐base superalloys.Table 17.3 Nominal composition of wrought stainless steels.

List of Illustrations

1 Chapter 1 Figure 1.1 The size of the heat source and its effect on welding. Figure 1.2 Heating of and hence damage to workpiece vs. power density of hea... Figure 1.3 Variation of weld strength with heat input per unit length of wel... Figure 1.4 Comparisons between welding processes: (a) angular distortion; (b... Figure 1.5 Five basic types of weld joint designs. Figure 1.6 Typical weld joint variations. Figure 1.7 Four welding positions. Figure 1.8 Oxyacetylene welding: (a) overall process; (b) welding area enlar... Figure 1.9 Three types of flames in oxyacetylene welding [4]. Figure 1.10 Chemical reactions and temperature distribution in a neutral oxy... Figure 1.11 Shielded metal arc welding: (a) overall process; (b) welding are... Figure 1.12 Gas–tungsten arc welding: (a) overall process; (b) welding area ... Figure 1.13 Three different polarities in GTAW. Figure 1.14 Surface cleaning action in GTAW with DC electrode positive. Figure 1.15 Plasma arc welding: (a) overall process; (b) welding area enlarg... Figure 1.16 Comparison between a gas–tungsten arc and a plasma arc [5]. Figure 1.17 A plasma arc weld made in 13‐mm‐thick 304 stainless steel with k... Figure 1.18 Gas–metal arc welding: (a) overall process; (b) welding area enl... Figure 1.19 Gas–metal arc welds in 6.4‐mm‐thick 5083 aluminum made with argo... Figure 1.20 Metal transfer during GMAW of steel with Ar–2% O 2shielding: (a)... Figure 1.21 Flux‐cored arc welding: (a) overall process; (b) welding area en... Figure 1.22 Sensitivity of gaseous shield of molten metal to wind or draft.... Figure 1.23 Submerged arc welding: (a) overall process; (b) welding area enl... Figure 1.24 Electroslag welding: (a) overall process; (b) welding area enlar... Figure 1.25 Transverse cross section of electroslag weld in 70‐mm‐thick stee... Figure 1.26 Electron beam welding: (a) process; (b) keyhole. Figure 1.27 Dispersion of electron beam at various ambient pressures [1].... Figure 1.28 Welds in 13‐mm‐thick 2219 aluminum: (a) electron beam weld; (b) ... Figure 1.29 Missed joints in electron beam welds in 150‐mm‐thick steels: (a)... Figure 1.30 Laser beam welding with solid‐state laser: (a) process; (b) ener... Figure 1.31 Keyhole laser‐beam welding: (a) process; (b) CO 2‐laser weld in 1... Figure 1.32 Weld penetration in GMAW and laser‐assisted GMAW using CO 2laser... Figure 1.33 Resistance spot welding: (a) overview; (b) resistance to electri... Figure 1.34 Resistance spot welding of dissimilar metals with highly differe... Figure 1.35 Friction stir butt welding: (a) tool (b) photo of tool; (c) butt... Figure 1.36 Stir zone (dynamically recrystallized zone) and HAZ (thermally a... Figure 1.37 Friction stir lap or spot welding: (a) plunging rotating tool in... Figure 1.38 Schematic illustration of rotary friction welding: (a) first pie... Figure 1.39 Linear friction welding in which a stationary member is forced a... Figure 1.40 Schematic illustration of solid‐state joining by making one memb... Figure 1.41 Diffusion welding between an upper piece and a lower piece showi... Figure E1.1 GTAW process used to weld A 1100 Al sheet with a 1100 Al filler ... Figure E1.2 Hot wire GTAW process. Figure P1.8 Edge weld of thin‐gauge steel. Figure P1.9 Steel plates were joined together in a single pass. Figure P1.14 SAW butt welding of two horizontal pipes.

2 Chapter 2 Figure 2.1 Heat losses to the surroundings in GTAW. A portion of the nominal... Figure 2.2 Measurement of arc efficiency in GTAW: (a) calorimeter; (b) rise ... Figure 2.3 GTAW vs. PAW: (a) GTAW; (b) PAW. Cooling by orifice gas nozzle an... Figure 2.4 Arc efficiencies in GTAW and PAW. Figure 2.5 Arc efficiencies in GMAW and SAW. Figure 2.6 Calorimeter for measuring heat inputs in GMAW: (a) metal droplets... Figure 2.7 Power inputs during GMAW of aluminum: (a) measured results; (b) b... Figure 2.8 Heat source efficiencies in several welding processes. Figure 2.9 Melting efficiency: (a) transverse weld cross section; (b) lower ... Figure 2.10 Effect of electrode tip angle on shape and power density distrib... Figure 2.11 Effect of electrode tip angle on shape of gas–tungsten arc. Figure 2.12 Effect of electrode tip geometry on shape of gas–tungsten arc we... Figure 2.13 Measured power density distributions. Figure 2.14 HAZ thermal cycle: (a) top view of weld pool, fusion zone (solid... Figure 2.15 Coordinate system (x, y, z) moving with heat source. Figure 2.16 Two‐dimensional heat flow during welding of thin workpiece. Figure 2.17 Modified Bessel function of second kind and zero order. Figure 2.18 Three‐dimensional heat flow during welding of semi‐infinite work... Figure 2.19 Converting the calculated temperature distribution in Figure 2.1... Figure 2.20 Calculated Rosenthal's three‐dimensional heat flow in 1018 steel... Figure 2.21 Similar to Figure 2.20 but with faster welding speed of 6.2 mm/s... Figure 2.22 Weld pool shapes in GTAW of IN718 sheets. Figure 2.23 Sharp pool end in GTAW of 309 stainless steel revealed by ice qu... Figure 2.24 Computer simulation of GTAW of 3.2‐mm‐thick 6061 Al, 110 A, 10 V... Figure 2.25 Effect of power density distribution on weld shape in GTAW of 3.... Figure 2.26 The thermal cycle at any location in a weld can be duplicated in... Figure E2.2 Transverse cross‐sections of welds.

3 Chapter 3 Figure 3.1 Gas‐tungsten welding arc: (a) sketch; (b) body‐fitted grid system... Figure 3.2 Arc produced by a tungsten electrode with a sharp tip: (a) Lorent... Figure 3.3 Current‐density field (left) and Lorentz force (right) in an arc ... Figure 3.4 Velocity and temperature fields in an arc produced by a tungsten ... Figure 3.5 Arc produced by a tungsten electrode with a flat end: (a) Lorentz... Figure 3.6 Current‐density field (left) and Lorentz force (right) in an arc ... Figure 3.7 Velocity and temperature fields in an arc produced by a tungsten ... Figure 3.8 Electrical conductivity of Ar and He and how they are affected by... Figure 3.9 304 stainless steel welded by stationary gas‐tungsten arc for 20 ... Figure 3.10 Computer simulation of gas‐tungsten arcs considering metal evapo... Figure 3.11 Calculated temperature and Al distributions in lap welding of Al... Figure 3.12 Comparison of measured weld cross‐section with those calculated ... Figure 3.13 Gas–tungsten welding arc: (a) power‐density distribution; (b) cu... Figure 3.14 Effect of arc length on gas‐tungsten welding arcs: (a) power‐den... Figure 3.15 Driving forces for weld pool convection: (a, b) buoyancy force; ... Figure 3.16 Effect of sulfur on surface tension and weld penetration: (a) su... Figure 3.17 Effect of sulfur on YAG laser welds: (a) 304 stainless steel wit... Figure 3.18 Liquid iron with various levels of sulfur: (a) surface tension; ... Figure 3.19 Welds in Wood's metal produced under the influence of: (a) buoya... Figure 3.20 Bead‐on‐plate weld of 304 stainless steel with 40 ppm sulfur mad... Figure 3.21 Visualization of Marangoni flow using laser light‐cut technique:... Figure 3.22 Verifying effect of surface‐active agent on Marangoni flow using... Figure 3.23 Computer modeling showing effect of dγ/dT on fluid flow in ... Figure 3.24 Computer modeling showing flow driven by Lorentz force: (a) curr... Figure 3.25 Computer modeling showing significant weld pool surface deformat... Figure 3.26 Weld pool shapes and isotherms in a 304 stainless steel with 50 ... Figure 3.27 Visualization of inward return flow below pool surface (Figure 3... Figure 3.28 Temperature measurement in NaNO 3pool during flow oscillation (F... Figure 3.29 Conduction‐mode laser spot welding (defocused laser beam, no key... Figure 3.30 Oscillation of a 8.5‐mm‐diameter pool surface in conduction‐mode... Figure 3.31 New theory explaining effect of sulfur shown in Fig. 3.29: (a) (... Figure 3.32 Transverse cross‐sections of 304 stainless steel welds: (a) 42 p... Figure 3.33 RSW and MA‐RSW: (a) RSW; (b) MA‐RSW; (c) magnetic field and Lore... Figure 3.34 Calculated results of RSW with induced magnetic field: (a) veloc... Figure 3.35 Resistance spot welds of DP980 steel: (a) (b) (c) thicknesses an... Figure E3.1 Distributions of surface tension on weld pool surfaces and flow ... Figure E3.2 Effect of SO 2(g) in Ar shielding gas on weld shape. Figure P3.6 Paraffin sandwiched between two vertical pieces of glass. Top su...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Welding Metallurgy»

Представляем Вашему вниманию похожие книги на «Welding Metallurgy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Welding Metallurgy»

Обсуждение, отзывы о книге «Welding Metallurgy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x