Dongming Feng - Computer Vision for Structural Dynamics and Health Monitoring

Здесь есть возможность читать онлайн «Dongming Feng - Computer Vision for Structural Dynamics and Health Monitoring» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Computer Vision for Structural Dynamics and Health Monitoring: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Computer Vision for Structural Dynamics and Health Monitoring»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Provides comprehensive coverage of theory and hands-on implementation of computer vision-based sensors for structural health monitoring This book is the first to fill the gap between scientific research of computer vision and its practical applications for structural health monitoring (SHM). It provides a complete, state-of-the-art review of the collective experience that the SHM community has gained in recent years. It also extensively explores the potentials of the vision sensor as a fast and cost-effective tool for solving SHM problems based on both time and frequency domain analytics, broadening the application of emerging computer vision sensor technology in not only scientific research but also engineering practice.
Computer Vision for Structural Dynamics and Health Monitoring Offers comprehensive understanding of the principles and applications of computer vision for structural dynamics and health monitoring Helps broaden the application of the emerging computer vision sensor technology from scientific research to engineering practice such as field condition assessment of civil engineering structures and infrastructure systems Includes a wide range of laboratory and field testing examples, as well as practical techniques for field application Provides MATLAB code for most of the issues discussed including that of image processing, structural dynamics, and SHM applications
is ideal for graduate students, researchers, and practicing engineers who are interested in learning about this emerging sensor technology and advancing their applications in SHM and other engineering problems. It will also benefit those in civil and aerospace engineering, energy, and computer science.

Computer Vision for Structural Dynamics and Health Monitoring — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Computer Vision for Structural Dynamics and Health Monitoring», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 In contrast to a contact‐type sensor (such as an LVDT or a string potentiometer), which requires time‐consuming, costly installation on the structure and physical connections to a stationary reference point, a computer vision sensor requires no physical access to the structure, and the camera can be set up at a convenient remote location. This represents significant savings of both time and cost. For monitoring bridges, for example, no traffic control is required. In addition, each contact‐type sensor measures one‐dimensional (1D) displacement, but a single computer vision camera can measure two‐dimensional (2D) displacements simultaneously. Figure 1.2 Vision‐based remote displacement sensor.

2 Compared with a noncontact GPS, which requires installation on the structure (but not a stationary reference point), a vision‐based sensor is far more accurate and less expensive. Depending on the cost, the GPS measurement error is typically in the range of 5–10 mm: more than an order of magnitude larger than that of a vision sensor.

3 Unlike a noncontact laser vibrometer, which must be placed very close to the measurement target due to the limited allowable laser power, a vision sensor can be placed hundreds of meters away (with the help of an appropriate zoom lens) and still achieve satisfactory measurement accuracy.

4 In contrast to conventional displacement sensors, almost all of which are point‐wise sensors, a single vision sensor can simultaneously track structural displacements at multiple points. More importantly, one can easily alter the measurement points after video images are taken, offering unique flexibility for achieving better SHM results.A comparison between commonly used vibration sensors and vision‐based displacement sensors is summarized in Table 1.1.

Table 1.1 Comparison of sensors for measuring structural vibrations.

Sensors Measure Pros Cons
Wired or wireless accelerometer Acceleration Suitable for continuous monitoringHardware easily availableSensitive to high‐frequency vibrations High cost of sensor systemHigh cost of installation and maintenanceContact sensorSingle‐point measurementAdditional mass on the structure may affect output
LVDT Displacement Hardware easily available Difficult and costly to installContact sensorOne‐dimensional measurementSingle‐point measurement
Laser vibrometer Velocity or displacement NoncontactAccurate High cost of sensor systemNot suitable for continuous monitoringLimited measurement distance
Computer vision sensor Displacement Noncontact, continuous monitoringLow‐cost industrial or consumer‐grade video camerasTwo‐ or three‐dimensional measurementMultiple flexible measurement points on the visible object surface Accuracy affected by weather, light, and camera motion

About 10 years ago, the research community started to develop computer vision–based sensor technology for displacement measurement of large‐size structures in controlled laboratory and challenging field environments. Modal analysis can be performed on the displacement data to extract natural frequencies and the mode shapes of a structure. Moreover, by analyzing the measured displacement time histories and modal analysis results, analytical models and parameters of the structure can be updated, damage detected, and structural integrity assessed. The adoption of vision sensors can significantly reduce the testing cost and time associated with conventional instrumentations. For example, Poozesh et al. [17] pointed out that testing a typical 50 m utility‐scale wind turbine blade requires approximately 200 gages (costing $35 000–$50 000) and about three weeks to set up a conventional strain gauge system, while by contrast, a multicamera system could streamline the blade‐testing process by eliminating the sensor instrumentation and reducing the setup time to two days.

It should be noted that computer vision sensing has been attracting attention and gaining popularity in two major areas of structural engineering: (i) vision‐based sensors for displacement measurement and their SHM applications for modal/parameter identification, damage detection, force estimation, and model validation and updating; and (ii) visual monitoring of structural surface for defect detection and condition assessment, including the use of unmanned aerial vehicles (UAVs) and machine learning techniques. The emphasis of this book is on the former application.

1.3 Organization of the Book

The goal of this book is to encourage the application of the emerging computer vision–based sensing technology not only in scientific research but also in engineering practice such as field condition assessment of civil engineering structures and infrastructure systems. This book may serve as a textbook for graduate students, researchers, and practicing engineers. Thus much emphasis has been placed on making computer vision algorithms and their applications in structural dynamics and SHM easily accessible and understandable. To achieve this goal, throughout the book, MATLAB computer code is provided for most of the problems that are discussed. Even though the book is conceived as an entity, its chapters are mostly self‐contained and can serve as tutorials and reference works on their respective topics.

Chapter 2 introduces fundamental facts about computer vision sensor systems and algorithms and software for measuring displacement time histories from video images. General principles are presented, including various template‐matching techniques for tracking targets and coordinate‐conversion methods for converting image pixel displacements to physical displacements. Vision sensor software packages are developed for real‐time multipoint displacement measurement based on two representative template‐matching techniques: upsampled cross‐correlation (UCC) and orientation code matching (OCM).

Chapter 3 presents a wide range of tests conducted in both laboratory and field environments to evaluate the performance of the vision‐based sensor system for dynamic displacement measurement. The accuracy of the measured displacement time histories is evaluated by comparing vision sensor results from tracking high‐contrast artificial targets or low‐contrast natural targets on the structural surface with those obtained with conventional reference sensors. The robustness of the vision sensor is examined against adverse environmental conditions such as dim light, background image disturbance, and partial template occlusion. The vision sensor system is also tested on outdoor in situ structures, including a pedestrian bridge, a highway bridge, two railway bridges, and two long‐span suspension bridges. Dynamic displacements induced by various excitations are measured during the daytime and at night from different distances with and without artificial targets installed. These tests confirm the efficacy of the computer vision sensor system for measuring structural dynamic responses in outdoor environments.

Chapters 4 7 demonstrate the use of measured displacement data for SHM. Chapter4compares modal analysis results based on displacement response data with those from conventional acceleration data. Furthermore, the identified modal parameters are used to update structural parameters such as the stiffness of a three‐story frame structure and to detect damage in a beam structure.

Chapter 5 describes a model‐updating approach for railway bridges, which is based on time‐domain optimization of analytical models using in situ measurement of the bridge displacement time histories under trainloads. A finite element model of the bridge is developed, considering the train‐track‐bridge dynamic interaction. A sensitivity analysis investigates the intrinsic effects of parameters of the train, track, and bridge subsystems on the dynamic response of the bridge. The model‐updating approach is applied to a short‐span bridge to identify train parameters such as speed as well as bridge structural parameters such as stiffness. The computer vision–based model updating approach can be developed into an effective tool for long‐term SHM of short‐span railway bridges.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Computer Vision for Structural Dynamics and Health Monitoring»

Представляем Вашему вниманию похожие книги на «Computer Vision for Structural Dynamics and Health Monitoring» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Computer Vision for Structural Dynamics and Health Monitoring»

Обсуждение, отзывы о книге «Computer Vision for Structural Dynamics and Health Monitoring» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x