Philippe J. S. De Brouwer - The Big R-Book

Здесь есть возможность читать онлайн «Philippe J. S. De Brouwer - The Big R-Book» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Big R-Book: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Big R-Book»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. 
The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R Provides a practical guide for non-experts with a focus on business users Contains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reporting Uses a practical tone and integrates multiple topics in a coherent framework Demystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in R Shows readers how to visualize results in static and interactive reports Supplementary materials includes PDF slides based on the book’s content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site
is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models.

The Big R-Book — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Big R-Book», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Foreword Foreword This book brings together skills and knowledge that can help to boost your career. It is an excellent tool for people working as database manager, data scientist, quant, modeller, statistician, analyst and more, who are knowledgeable about certain topics, but want to widen their horizon and understand what the others in this list do. A wider understanding means that we can do our job better and eventually open doors to new or enhanced careers. The student who graduated froma science, technology, engineering ormathematics or similar program will find that this book helps to make a successful step from the academic world into a any private or governmental company. This book uses the popular (and free) software R as leitmotif to build up essential programming proficiency, understand databases, collect data, wrangle data, buildmodels and select models froma suit of possibilities such linear regression, logistic regression, neural networks, decision trees, multi criteria decision models, etc. and ultimately evaluate a model and report on it. We will go the extra mile by explaining some essentials of accounting in order to build up to pricing of assets such as bonds, equities and options. This helps to deepen the understanding how a company functions, is useful to bemore result oriented in a private company, helps for one's own investments, and provides a good example of the theories mentioned before. We also spend time on the presentation of results and we use R to generate slides, text documents and even interactive websites! Finally we explore big data and provide handy tips on speeding up code. I hope that this book helps you to learn faster than me, and build a great and interesting career. Enjoy reading! Philippe De Brouwer 2020

3 About the Companion Site About the Companion Site This book is accompanied by a companion website: www.wiley.com/go/De Brouwer/The Big R-Book The website includes materials for students and instructors: The Student companion site will contain the R-code, and the Instructor companion site will contain PDF slides based on the book's content.

4 About the Author

5 Preface

6 Acknowledgements

7 PART I: Introduction 1 The Big Picture with Kondratiev and Kardashev Notes 2 The Scientific Method and Data Note 3 Conventions Notes

8 PART II: Starting with R and Elements of Statistics 4 The Basics of R 4.1 Getting Started with R 4.2 Variables 4.3 Data Types 4.4 Operators 4.5 Flow Control Statements 4.6 Functions 4.7 Packages 4.8 Selected Data Interfaces Notes 5 Lexical Scoping and Environments5.1 Environments in R 5.2 Lexical Scoping in R Note 6 The Implementation of OO 6.1 Base Types 6.2 S3 Objects 6.3 S4 Objects 6.4 The Reference Class, refclass, RC or R5 Model 6.5 Conclusions about the OO Implementation Notes 7 Tidy R with the Tidyverse7.1 The Philosophy of the Tidyverse 7.2 Packages in the Tidyverse 7.3 Working with the Tidyverse Notes 8 Elements of Descriptive Statistics 8.1 Measures of Central Tendency 8.2 Measures of Variation or Spread 8.3 Measures of Covariation 8.4 Distributions 8.5 Creating an Overview of Data Characteristics Notes 9 Visualisation Methods 9.1 Scatterplots 9.2 Line Graphs 9.3 Pie Charts 9.4 Bar Charts 9.5 Boxplots 9.6 Violin Plots 9.7 Histograms 9.8 Plotting Functions 9.9 Maps and Contour Plots 9.10 Heat-maps 9.11 Text Mining 9.12 Colours in R Notes 10 Time Series Analysis10.1 Time Series in R 10.2 Forecasting Note 11 Further Reading

9 PART III: Data Import 12 A Short History of Modern Database Systems Notes 13 RDBMS Notes 14 SQL14.1 Designing the Database 14.2 Building the Database Structure 14.3 Adding Data to the Database 14.4 Querying the Database 14.5 Modifying the Database Structure 14.6 Selected Features of SQL Notes 15 Connecting R to an SQL Database Note

10 PART IV: Data Wrangling 16 Anonymous Data Notes 17 Data Wrangling in the tidyverse 17.1 Importing the Data 17.2 Tidy Data 17.3 Tidying Up Data with tidyr 17.4 SQL-like Functionality via dplyr 17.5 String Manipulation in the tidyverse 17.6 Dates with lubridate 17.7 Factors with Forcats Notes 18 Dealing with Missing Data 18.1 Reasons for Data to be Missing 18.2 Methods to Handle Missing Data 18.3 R Packages to Deal with Missing Data Notes 19 Data Binning19.1 What is Binning and Why Use It 19.2 Tuning the Binning Procedure 19.3 More Complex Cases: Matrix Binning 19.4 Weight of Evidence and Information Value Notes 20 Factoring Analysis and Principle Components 20.1 Principle Components Analysis (PCA) 20.2 Factor Analysis Note

11 PART V: Modelling 21 Regression Models21.1 Linear Regression 21.2 Multiple Linear Regression 21.3 Performance of Regression Models 22 Classification Models 22.1 Logistic Regression 22.2 Performance of Binary Classification Models Notes 23 Learning Machines 23.1 Decision Tree 23.2 Random Forest 23.3 Artificial Neural Networks (ANNs) 23.4 Support Vector Machine 23.5 Unsupervised Learning and Clustering Notes 24 Towards a Tidy Modelling Cycle with modelr 24.1 Adding Predictions 24.2 Adding Residuals 24.3 Bootstrapping Data 24.4 Other Functions of modelr 25 Model Validation 25.1 Model Quality Measures 25.2 Predictions and Residuals 25.3 Bootstrapping 25.4 Cross-Validation 25.5 Validation in a Broader Perspective Notes 26 Labs26.1 Financial Analysis with quantmod Notes 27 Multi Criteria Decision Analysis (MCDA)27.1 What and Why 27.2 General Work‐flow 27.3 Identify the Issue at Hand: Steps 1 and 2 27.4 Step 3: the Decision Matrix 27.5 Step 4: Delete Inefficient and Unacceptable Alternatives 27.6 Plotting Preference Relationships 27.7 Step 5: MCDA Methods 27.8 Summary MCDA Notes

12 PART VI: Introduction to Companies 28 Financial Accounting (FA) 28.1 The Statements of Accounts 28.2 The Value Chain 28.3 Further, Terminology 28.4 Selected Financial Ratios Notes 29 Management Accounting29.1 Introduction 29.2 Selected Methods in MA 29.3 Selected Use Cases of MA Notes 30 Asset Valuation Basics 30.1 Time Value of Money 30.2 Cash 30.3 Bonds 30.4 The Capital Asset Pricing Model (CAPM) 30.5 Equities 30.6 Forwards and Futures 30.7 Options Notes

13 PART VII: Reporting 31 A Grammar of Graphics with ggplot2 31.1 The Basics of ggplot2 31.2 Over-plotting 31.3 Case Study for ggplot2 Notes 32 R Markdown Note 33 knitr and LATEX Notes 34 An Automated Development Cycle 35 Writing and Communication Skills Note 36 Interactive Apps 36.1 Shiny 36.2 Browser Born Data Visualization 36.3 Dashboards Notes

14 PART VIII: Bigger and Faster R 37 Parallel Computing 37.1 Combine foreach and doParallel 37.2 Distribute Calculations over LAN with Snow 37.3 Using the GPU Notes 38 R and Big Data 38.1 Use a Powerful Server 38.2 Using more Memory than we have RAM Notes 39 Parallelism for Big Data 39.1 Apache Hadoop 39.2 Apache Spark Notes 40 The Need for Speed 40.1 Benchmarking 40.2 Optimize Code 40.3 Profiling Code 40.4 Optimize Your Computer Notes

15 PART IX: Appendices A Create your own R Package A.1 Creating the Package in the R Console A.2 Update the Package Description A.3 Documenting the Functions A.4 Loading the Package A.5 Further Steps Notes B Levels of MeasurementB.1 Nominal Scale B.2 Ordinal Scale B.3 Interval Scale B.4 Ratio Scale C Trademark Notices C.1 General Trademark Notices C.2 R-Related Notices D Code Not Shown in the Body of the Book E Answers to Selected Questions Note

16 Bibliography

17 Nomenclature

18 Index

19 End User License Agreement

List of Tables

1 Chapter 8 Table 8.1: Common distributions and their names in R . Table 8.2: Summary information based on the dataset mtcars.

2 Chapter 13Table 13.1: The table of authors for our simple database system .Table 13.2: The table that contains information related to books .Table 13.3: A simple example of a relational database system or RDBMS for a simp ...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Big R-Book»

Представляем Вашему вниманию похожие книги на «The Big R-Book» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Big R-Book»

Обсуждение, отзывы о книге «The Big R-Book» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x