Philippe J. S. De Brouwer - The Big R-Book

Здесь есть возможность читать онлайн «Philippe J. S. De Brouwer - The Big R-Book» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Big R-Book: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Big R-Book»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces professionals and scientists to statistics and machine learning using the programming language R Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science. 
The Big R-Book for Professionals: From Data Science to Learning Machines and Reporting with R Provides a practical guide for non-experts with a focus on business users Contains a unique combination of topics including an introduction to R, machine learning, mathematical models, data wrangling, and reporting Uses a practical tone and integrates multiple topics in a coherent framework Demystifies the hype around machine learning and AI by enabling readers to understand the provided models and program them in R Shows readers how to visualize results in static and interactive reports Supplementary materials includes PDF slides based on the book’s content, as well as all the extracted R-code and is available to everyone on a Wiley Book Companion Site
is an excellent guide for science technology, engineering, or mathematics students who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models.

The Big R-Book — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Big R-Book», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

16 Chapter 23Figure 23.1: An example of the decision tree on fake data a represented in t ...Figure 23.2: Three alternatives for the impurity measure in the case of clas ...Figure 23.3: The plot of the complexity parameter (cp) via the function plot ...Figure 23.4: The decision tree, fitted by rpart. This figure helps to visual ...Figure 23.5: The same tree as in Figure 23.4 but now pruned with a complexit ...Figure 23.6: The decision tree represented by the function prp() from the pa ...Figure 23.7: The plot of the complexity parameter (cp) via the function plot ...Figure 23.8: rpart tree on mpg for the dataset mtcars. Figure 23.9: The same tree as in Figure 23.8 but now pruned with a complexit ...Figure 23.10: ROC curve of the decision tree. Figure 23.11: The accuracy for the decision tree on the Titanic data. Figure 23.12: The plot of a randomForest object shows how the model improves ...Figure 23.13: The importance of each variable in the random-forest model. Figure 23.14: Partial dependence on the variables (1 of 3). Figure 23.15: Partial dependence on the variables (2 of 3). Figure 23.16: Partial dependence on the variables (3 of 3). Figure 23.17: A logistic regression is actually a neural network with one ne ...Figure 23.18: A simple neural net fitted to the dataset of mtcars, predictin ...Figure 23.19: A visualisation of the ANN. Note that we left out the weights, ...Figure 23.20: A visualisation of the performance of the ANN (left) compared ...Figure 23.21: Avisualisation of the performance of theANNcompared to the lin ...Figure 23.22: A boxplot for the MSE of the cross validation for the ANN. Figure 23.23: The cars in the dataset mtcars with fuel consumption plotted i ...Figure 23.24: The result of k-means clustering with three clusters on the we ...Figure 23.25: The plot() function applied on a prcomp object visualises the ...Figure 23.26: The custom function biplot() project all data in the plane tha ...Figure 23.27: A projection in the plane of the two major principal component ...Figure 23.28: The projection of mtcars in the surface formed by the two firs ...Figure 23.29: Two dimensional projections of the dependency structure of the ...Figure 23.30: A three dimensional plot of the cars with on the z-axis the fi ...Figure 23.31: plotly will produce a graph that is not only 3D but is interac ...Figure 23.32: A plot with autoplot(), enhanced with ggrepel of the fuzzy clu ...Figure 23.33: A hierarchical cluster for the dataset mtcars.

17 Chapter 24Figure 24.1: The results of the bootstrap exercise: a set of estimates for ...

18 Chapter 25Figure 25.1: A spacing grid for the predictions of t mpg . Figure 25.2: Bootstrapping the returns of the S&P500 index . Figure 25.3: The histograms of the different coefficients of the linear reg ...Figure 25.4: The histogram of the RMSE for a Monte Carlo cross validation o ...Figure 25.5: Histogramof the RMSE based on a 5-fold cross validation. The h ...Figure 25.6: The life cycle of a model: a model is an integrated part of bu ...

19 Chapter 26Figure 26.1: Demonstration of the barChart() function of the package quantm ...Figure 26.2: Demonstration of the lineChart() function of the package quand ...Figure 26.3: Demonstration of the candleChart() function of the package qua ...Figure 26.4: Bollinger bands with the package quandmod . Figure 26.5: The evolution of the HSBC share for the last ten years ....Figure 26.6: The Q-Q plot of our naive model to forecast the next opening p ...

20 Chapter 27Figure 27.1: A visualization of the dominance relationship .Figure 27.2: The scores of different cities according to the WSM .Figure 27.3: The preference structure as found by the ELECTRE I method give ...Figure 27.4: Another representation of Figure 27.3 . It is clear that Krakow ...Figure 27.5: The results of ELECTRE I with comparability index C 2 and param ...Figure 27.6: The results for ELECTRE Iwith comparability indexC 2. The A → B ...Figure 27.7: The preference structure as found by the ELECTRE II method giv ...Figure 27.8: The results for ELECTRE I with comparability index C 2.Figure 27.9: Examples of smooth transition schemes for preference functions ...Figure 27.10: Examples of practically applicable preferences functions P ( d )...Figure 27.11: The hierarchy between alternatives as found by PROMethEE I .Figure 27.12: The preference relations resulting from PROMethEE I. For exam ...Figure 27.13: The result for PROMethEE I with different preference function ...Figure 27.14: The results for PROMethEE I method with the custom preference ...Figure 27.15: Promethee II can also be seen as using a richer preference st ...Figure 27.16: The hierarchy between alternatives as found by PROMethEE II. ...Figure 27.17: PROMethEE II provides a full ranking. Here we show how much e ...Figure 27.18: The variance explained by each principal component .Figure 27.19: A projection of the space of alternatives in the 2D‐plane for ...Figure 27.20: A standard plot with autoplot() with labels coloured Figure 27.21: Autoplot with visualization of two clusters Figure 27.22: Clustering with elliptoid borders, labels of alternative, pro ...

21 Chapter 28Figure 28.1: The elements of wealth creation in a company. The company acqu ...Figure 28.2: KPIs of the Value Chain that can be used by a manager who want ...

22 Chapter 30Figure 30.1: The Epachenikov kernel (left), for h = 1; and the Gaussian ker ...Figure 30.2: As illustration on how the Epachenikov Kernel Estimation works ...Figure 30.3: Some concepts illustrated on the example of a call option with ...Figure 30.4: The intrinsic value of a long call illustratedwith its payoff ...Figure 30.5: The intrinsic value of a short call illustrated with its payof ...Figure 30.6: The payoff and profit for a long put (left) and a short put (r ...Figure 30.7: The price of a long call compared to its intrinsic value. The ...Figure 30.8: The price of a long put compared to its intrinsic value. Note ...Figure 30.9: Step 1 in the binomial model . Figure 30.10: The first 2 steps of the binomial model . Figure 30.11: The Cox–Ross–Rubinsteinmodel for the binomialmodel applied to ...Figure 30.12: he Cox–Ross–Rubinsteinmodel for the binomialmodel applied to ...Figure 30.13: The value of a call option depends on many variables. Some ar ...Figure 30.14: The value of a put option depends on many variables. Some are ...Figure 30.15: An illustration of how the delta of a call and put compare in ...Figure 30.16: Linear option strategies illustrated. The red line is the int ...Figure 30.17: Linear option strategies illustrated. Part 2 (basic composite ...Figure 30.18: Linear option strategies illustrated. Part 3 (some more compl ...Figure 30.19: A covered call is a short call where the losses are protected ...Figure 30.20: A married put is a put option combined with the underlying as ...Figure 30.21: A collar is a structure that protects us from strong downward ...

23 Chapter 31Figure 31.1: A basic and simple scatter-plot generated with ggplot2. Figure 31.2: The same plot as in previous figure, but now enhanced with Loe ...Figure 31.3: The same plot as in previous Figure, but now enhanced with dif ...Figure 31.4: A facet plot will create sub-plots per discrete value of one o ...Figure 31.5: The standard functionality for scatterplots is not optimal for ...Figure 31.6: The contour plot is able to show where the density of points i ...Figure 31.7: Adding a Loess estimate is a good idea to visualize the genera ...Figure 31.8: This plot shows a facet plot of a contour plot with customised ...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Big R-Book»

Представляем Вашему вниманию похожие книги на «The Big R-Book» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Big R-Book»

Обсуждение, отзывы о книге «The Big R-Book» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x