Tamilvanan Shunmugaperumal - Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting

Здесь есть возможность читать онлайн «Tamilvanan Shunmugaperumal - Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book combines emulsion knowledge into a single, comprehensive volume, ideal for professionals and students involved in the areas of pharmaceutical science who are looking to learn about this emergent research concept.<br /><br /> <ul> <li>Compiles the step-by-step investigations made concerning the potential of nanosized emulsions on both drug delivery and drug targeting areas by different group of scientists in various laboratories across the world</li> <li>Inverts the common nano-emulsions coverage trend of focusing on focused on the particulate system itself, instead exploring the way to turn nanosized emulsions as biomedical tool, as well as, treating the in vitro and in vivo aspects after administration</li> <li>Provides an overview of the current state-of-the art regarding the development of tocol emulsions, emulsion adjuvants in immunization research, oxygen-carrying emulsions (called as fluorocarbon emulsion) and emulsions for delivering drugs to nasal and topical (ocular and transdermal) routes</li> </ul>

Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.2) The estimated model equations both coded and actual regression coefficients - фото 20

The estimated model equations (both coded and actual), regression coefficients, R 2, adjusted R 2, regression ( P ‐value and F ‐value), and standard deviation related to the effect of the three CPPs (independent variables) are presented in Table 2.8. Although the actual model equation contains the levels specified in the original units for each CPP, this equation should not be used to determine the relative impact of each CPP (factor). Therefore, the coded model equation is used for identifying the relative impact of the CPPs by comparing the regression coefficient values of each factor. Nevertheless, a positive value in the regression equation represents an effect that favors optimization due to synergistic effect, while a negative value indicates an inverse relationship or antagonistic effect between the factor and the responses (Woitiski et al. 2009). It should be mentioned that nonsignificant ( p < 0.005) linear terms (main CCD effect) were included in the final reduced model if quadratic or interaction terms containing these variables were found to be significant ( p < 0.05). In the present study, the response surface analysis demonstrated that the second‐order polynomial used for MPS has a higher coefficient of determination ( R 2= 0.8186) compared to ZP value ( R 2= 0.6525) and PDI value ( R 2= 0.7188). The obtained coefficient of determination showed that >82% of the response variation of the MPS, PDI, and ZP values could be described by response surface models as the function of the CPPs. It was observed that the lack of fit had no indication of significant ( p < 0.05) for the final reduced model, therefore providing the satisfactory fitness of the RSM to the significant independent variables (factors) effect. From Table 2.8, it was observed that two independent variables ( A and B ) exhibited a positive effect on the response of ZP ( R 3). Both MPS ( R 1) and PDI ( R 2) showed a positive effect for all of the tested three independent variables ( A , B , and C ). The interaction coefficients with more than one factor, or higher order terms in the regression equation, represent the interaction between terms or the quadratic relationship, respectively, which suggest a nonlinear relationship between factors and responses (Motwani et al. 2008). Therefore, a different degree of response than it is originally predicted by regression equation may be expected from the independent variables as they are varied at different levels or more than one factor or variables is changed simultaneously (Woitiski et al. 2009). In the present face‐centered CCD modeling, all the responses (MPS, PDI, and ZP or R 1, R 2, and R 3) were affected by the interaction of independent variables and hence displaying a quadratic relationship. The interaction effects between B and C was favorable for response R 3(showing a positive regression coefficient value of 2.06) and non‐favorable for R 1and R 2(showing negative regression coefficient values). The interaction effects between A and B was favorable for response R 1(showing a positive regression coefficient value of 13.75) and non‐favorable for R 2and R 3(showing negative regression coefficient values). However, it was observed that the interaction between A and C had an inverse effect for all three responses variables studied. Noticeably, quadratic effects ( A 2, B 2, and C 2) were also seen between all three independent variables and all of the studied three response variables (MPS, PDI, and ZP or R 1, R 2, and R 3). The highest and positive quadratic effect for all three independent variables was noticed for the MPS response variable R 1(showing a positive regression coefficient value of 15.35). Similarly, the highest and negative quadratic effect was also noted for the MPS response variable R 1(showing a negative regression coefficient −118.30).

TABLE 2.8. Estimated Coded and Actual Model Equations Along with ANOVA of Regression Coefficients for Face‐Centered Central Composite Design (CCD) Effects (Main or Linear, Quadratic and Interaction) Against the Critical Quality Attributes (CQAs, Dependent Variables) to Determine the Best Fitted Quadratic Equation

CQAs Model Equations R 2 Adjusted R 2
Mean particle size ( R 1) Coded: R 1 =569.86 + 65.20 × A + 25.21 × B + 43.03 × C + 13.75 × AB − 55.18 × AC − 10.38 × BC + 15.35 × A 2− 118.30 × B 2− 91.00 × C 2 0.8186 0.6553
Actual:PS = −5992.56500 + 663.59545 × a + 88.29447 × b + 120.25931 × c + 4.58333 × a × b − 8.82800 × a × c − 0.138333 × b × c + 61.41818 × a 2− 3.28598 × b 2− 0.582371 × c 2
Polydispersity index ( R 2) Coded: R 2= 0.6038 + 0.0325 × A + 0.0234 × B + 0.0960 × C − 0.0106 × AB − 0.0649 × AC − 0.0494 × BC + 0.0180 × A 2+ 0.0075 × B 2+ 0.1455 × C 2 0.7188 0.4658
Actual:PDI = −9.27017 + 0.800295 × a + 0.061847 × b +0.194161 × c −0.003542 × a × b − 0.010380 × a × c − 0.000658 × b × c + 0.071818 × a 2+ 0.000207 × b 2− 0.000931 × c 2
Zeta potential ( R 3) Coded: R 3= 28.89 + 0.0500 × A + 1.32 × B − 2.76 × C − 2.21 × AB − 0.9125 × AC + 2.06 × BC − 0.8136 × A 2− 1.56 × B 2− 4.26 × C 2 0.6525 0.3397
Actual:ZP =−180.64250 + 31.48864 × a − 0.037576 × b + 4.44347 × c − 0.737500 × a × b − 0.146000 × a × c + 0.027500 × b × c − 3.25455 × a 2− 0.043434 × b 2− 0.027287 × c 2
CCD effects Variables R 1 R 2 R 3
F‐value P‐value F‐value P‐value F‐value P‐value
Linear term A 7.61 0.0202 1.09 0.3219 0.0013 0.9714
B 1.14 0.3111 0.5629 0.4704 0.9391 0.3554
C 3.32 0.0986 9.47 0.0117 4.11 0.0702
Interaction term AB 0.2709 0.6141 0.0928 0.7668 2.11 0.1769
AC 4.36 0.0633 3.46 0.0924 0.3590 0.5624
BC 0.1542 0.7028 2.01 0.1872 1.83 0.2054
Quadratic term A 2 0.1161 0.7403 0.0911 0.7689 0.0981 0.7605
B 2 6.89 0.0254 0.0157 0.9027 0.3624 0.5606
C 2 4.08 0.0711 5.99 0.0344 2.69 0.1317

Note: A/a : Castor oil, B/b : Chitosan, C/c : Poloxamer.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting»

Представляем Вашему вниманию похожие книги на «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting»

Обсуждение, отзывы о книге «Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x