Biopolymers for Biomedical and Biotechnological Applications

Здесь есть возможность читать онлайн «Biopolymers for Biomedical and Biotechnological Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biopolymers for Biomedical and Biotechnological Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biopolymers for Biomedical and Biotechnological Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book highlights the technical and methodological advancements in introducing biopolymers, their study and promoted applications. Organized in four parts, the book provides initially a general overview over biopolymers, properties and biocompatibility and continues with dedicated parts on ?Biopolyemrs through Bioengineering and Biotechnology Venues?, ?Polymeric Biomaterials with wide applications? and ?Biopolymers for Specific Applications?.

Biopolymers for Biomedical and Biotechnological Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biopolymers for Biomedical and Biotechnological Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

19 19 Luang‐In, V., Saengha, W., and Deeseenthum, S. (2018). Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk kefir. Microbiology and Biotechnology Letters 46 (1): 9–17.

20 20 Lourenço, S.C., Torres, C.A.V., Nunes, D. et al. (2017). Using a bacterial fucose‐rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules 104: 1099–1106.

21 21 Huang, M., Wang, F., Zhou, X. et al. (2015). Hypoglycemic and hypolipidemic properties of polysaccharides from Enterobacter cloacae Z0206 in KKAy mice. Carbohydrate Polymers 117: 91–98.

22 22 Bhat, B. and Bajaj, B.K. (2018). Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1 isolated from kalarei. Bioresource Technology 254: 264–267.

23 23 Trabelsi, I., Ktari, N., Slima, S.B. et al. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp.Ca6. International Journal of Biological Macromolecules 103: 194–201.

24 24 Di, W., Zhang, L., Wang, S. et al. (2017). Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydrate Polymers 171: 307–315.

25 25 Rani, R.P., Anandharaj, M., and Ravindran, A.D. (2018). Characterization of a novel exopolysaccharide produced by Lactobacillus gasseri FR4 and demonstration of its in vitro biological properties. International Journal of Biological Macromolecules 109: 772–783.

26 26 Jeong, D., Kim, D.H., Kang, I.B. et al. (2017). Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir. Food Control 78: 436–442.

27 27 Sasikumar, K., Vaikkath, D.K., Devendra, L., and Nampoothiri, K.M. (2017). An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource Technology 241: 1152–1156.

28 28 Pérez‐Ramos, A., Mohedano, M.L., Pardo, M.Á., and López, P. (2018). β‐Glucan producing Pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Frontiers in Microbiology 9: 1684.

29 29 Chen, G., Qiana, W., Li, J. et al. (2015). Exopolysaccharide of Antarctic bacterium Pseudoalteromonas sp. S‐5 induces apoptosis in K562 cells. Carbohydrate Polymers 121: 107–114.

30 30 Cheng, J.J., Chang, C.C., Chao, C.H., and Lu, M.K. (2012). Characterization of fungal sulfated polysaccharides and their synergistic anticancer effects with doxorubicin. Carbohydrate Polymers 90: 134–139.

31 31 Chen, Y., Mao, W., Tao, H. et al. (2011). Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresource Technology 102: 8179–8184.

32 32 Bauerová, K., Mihalová, D., Drábiková, K. et al. (2012). Effects of glucomannan isolated from Candida utilis on adjuvant arthritis in Lewis rats. Current Topics in Nutraceutical Research 10 (1): 13–30.

33 33 Orlandelli, R.C., da Silva, M.L.C., Vasconcelos, A.F.D. et al. (2017). β‐(1→3,1→6)‐d‐Glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF‐7 and HepG2‐C3A cells. International Journal of Biological Macromolecules 94: 431–437.

34 34 Prathyusha, A.M.V.N., Sheela, G.M., and Bramhachari, P.V. (2018). Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnology Reports 19: e00277.

35 35 Mahapatra, S. and Banerjee, D. (2012). Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydrate Polymers 90: 683–689.

36 36 Lu, Y., Xu, L., Cong, Y. et al. (2019). Structural characteristics and anticancer/antioxidant activities of a novel polysaccharide from Trichoderma kanganensis. Carbohydrate Polymers 205: 63–71.

37 37 Arad, S.M., Rapoport, L., Moshkovich, A. et al. (2006). Superior biolubricant from a species of red microalga. Langmuir 22 (17): 7313–7317.

38 38 Dvir, I., Stark, A.H., Chayoth, R. et al. (2009). Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1 (2): 156–167.

39 39 Matsui, S.M., Muizzudin, N., Arad, S.M., and Marenus, K. (2003). Sulfated polysaccharides from red microalgae anti‐inflammatory properties in vitro and in vivo. Applied Biochemistry and Biotechnology 104: 13–22.

40 40 Soanen, N., Da Silva, E., Gardarin, C. et al. (2016). Improvement of exopolysaccharide production by Porphyridium marinum. Bioresource Technology 213: 231–238.

41 41 Sun, L., Wang, C., Shi, Q., and Ma, C. (2009). Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. International Journal of Biological Macromolecules 45 (1): 42–47.

42 42 Radonic, A., Thulke, S., Achenbach, J. et al. (2010). Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to vaccinia virus. Journal of Antivirals and Antiretrovirals 2 (4): 51–55.

43 43 Roussel, M., Villay, A., Delbac, F. et al. (2015). Antimicrosporidian activity of sulfated polysaccharides from algae and their potential to control honeybee nosemosis. Carbohydrate Polymers 133: 213–220.

44 44 Huang, J., Liu, L., Yu, Y. et al. (2006). Reduction in the blood glucose level of exopolysaccharide of Porphyridium cruentum in experimental diabetic mice. Journal of Fujian Normal University 22 (3): 77–80.

45 45 Raposo, M.F.J., Morais, A.M.M.B., and Morais, R.M.S.C. (2014). Influence of sulfate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sciences 101 (1–2): 56–63.

46 46 Villay, A., Laroche, C., Roriz, D. et al. (2013). Optimisation of culture parameters for exopolysaccharides production by the microalga Rhodella violacea. Bioresource Technology 146: 732–735.

47 47 Chen, B., You, W., Huang, J. et al. (2010). Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulata. World Journal of Microbiology and Biotechnology 26 (5): 833–840.

48 48 Hasui, M., Matsuda, M., Okutani, K., and Shigeta, S. (1995). In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. International Journal of Biological Macromolecules 17 (5): 293–297.

49 49 Hasui, M., Matsuda, M., Yoshimatsu, S., and Okutani, K. (1995). Production of a lactate‐associated galactan sulfate by a dinoflagellate Gymnodinium A3. Fisheries Science 61 (2): 321–326.

50 50 Umemura, K., Yanase, K., Suzuki, M. et al. (2003). Inhibition of DNA topoisomerases I and II, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochemical Pharmacology 66 (3): 481–487.

51 51 Bae, S.‐Y., Yim, J.H., Lee, H.K., and Pyo, S. (2006). Activation of murine peritoneal macrophages by sulfated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF‐κB and JNK pathway. International Immunopharmacology 6 (3): 473–484.

52 52 Yim, J.H., Kim, S.J., Ahn, S.H. et al. (2004). Antiviral effects of sulfated exopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Marine Biotechnology 6 (1): 17–25.

53 53 Yim, J.H., Kim, S.J., Ahn, S.H., and Lee, H.K. (2007). Characterization of a novel bioflocculant, p‐KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresource Technology 98 (2): 361–367.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biopolymers for Biomedical and Biotechnological Applications»

Представляем Вашему вниманию похожие книги на «Biopolymers for Biomedical and Biotechnological Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biopolymers for Biomedical and Biotechnological Applications»

Обсуждение, отзывы о книге «Biopolymers for Biomedical and Biotechnological Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x