Position, Navigation, and Timing Technologies in the 21st Century

Здесь есть возможность читать онлайн «Position, Navigation, and Timing Technologies in the 21st Century» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Position, Navigation, and Timing Technologies in the 21st Century: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Position, Navigation, and Timing Technologies in the 21st Century»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications.
Volume 1 of
contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume.
Volume 2 of
consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment.
In addition, this text:
Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT
will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies.pnt21book.com

Position, Navigation, and Timing Technologies in the 21st Century — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Position, Navigation, and Timing Technologies in the 21st Century», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

160 160 Versus Technology, http://www.versustech.com

161 161 EIRIS System, http://www.elcomel.com.ar/english/eiris.htm

162 162 S. Sen, D. Kim, S. Laroche, K.H. Kim, and J. Lee, “Bringing CUPID indoor positioning system to practice,” in Proceedings of the 24th International Conference on World Wide Web, ACM, May 2015, pp. 938–948.

163 163 Q. Xu, R. Zheng, and S. Hranilovic, “Idyll: Indoor localization using inertial and light sensors on smartphones,” in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing ACM2015, September 2015, pp. 307–318.

164 164 T. Liu, M. Carlberg, G. Chen, J. Chen, J. Kua, and A. Zakhor, “Indoor localization and visualization using a human‐operated backpack system,” Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 15–17, 2010 Campus Science City, ETH Zurich, Switzerland, 2010, pp. 890–899.

165 165 D. Lymberopoulos, J. Liu, X. Yang, R.R. Choudhury, S. Sen, and V. Handziski, “Microsoft indoor localization competition: Experiences and lessons learned,” GetMobile: Mobile Computing and Communications, 18(4), pp. 24–31, 2015.

166 166 M. Romanovas, V. Goridko, A. Al‐Jawad, M. Schwaab, L. Klingbeil, M. Traechtler, and Y. Manoli, “A study on indoor pedestrian localization algorithms with foot‐mounted sensors,” International Conference on Indoor Positioning and Indoor Navigation, 2012.

167 167 B. Donohoo, C. Ohlsen, and S. Pasricha, “A middleware framework for application‐aware and user‐specific energy optimization in smart mobile devices,” Journal of Pervasive and Mobile Computing, Vol. 20, pp. 47–63, July 2015.

168 168 B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, and Y. Xiang, “Context‐aware energy enhancements for smart mobile devices,” IEEE Transactions on Mobile Computing (TMC), Vol. 13, No. 8, August 2014, pp. 1720–1732.

169 169 B. Donohoo, C. Ohlsen, S. Pasricha, and C. Anderson, “Exploiting spatiotemporal and device contexts for energy‐efficient mobile embedded systems,” IEEE/ACM Design Automation Conference (DAC 2012), July 2012.

170 170 B. Donohoo, C. Ohlsen, and S. Pasricha, “AURA: An application and user interaction aware middleware framework for energy optimization in mobile devices,” IEEE International Conference on Computer Design (ICCD 2011), October 2011.

171 171 S. Tiku and S. Pasricha, “PortLoc: A portable data‐driven indoor localization framework for smartphones,” IEEE Design and Test, 2019.

172 172 S. Tiku, S. Pasricha, B. Notaros, and Q. Han, “SHERPA: A lightweight smartphone heterogeneity resilient portable indoor localization framework,” IEEE International Conference on Embedded Software and Systems (ICESS), Las Vegas, Nevada, June 2019.

173 173 L. Wirola, T. Laine, and J. Syrjärinne, “Mass market considerations for indoor positioning and navigation,” Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 15–17, 2010 Campus Science City, ETH Zurich, Switzerland, 2010.

174 174 O. Schneider, “Requirements for positioning and navigation in underground constructions,” Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 15–17, 2010 Campus Science City, ETH Zurich, Switzerland, 2010.

175 175 J. Rantakokko, P. Händel, M. Fredholm, and F. Marsten‐Eklöf, “User requirements for localization and tracking technology: A survey of mission‐specific needs and constraints,” Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 15–17, 2010 Campus Science City, ETH Zurich, Switzerland, 2010.

38 Navigation with Cellular Signals of Opportunity

Zaher (Zak) M. Kassas

University of California Irvine, United States

38.1 Introduction

Among the different types of signals of opportunity, cellular signals are particularly attractive for positioning, navigation, and timing (PNT) due to their inherently attractive characteristics:

AbundanceCellular base transceiver stations (BTSs) are plentiful due to the ubiquity of cellular and smartphones and tablets. The number of BTSs is bound to increase dramatically with the introduction of small cells to support fifth‐generation (5G) wireless systems.

Geometric diversityThe cell configuration by construction yields favorable BTS geometry, unlike certain terrestrial transmitters, which tend to be colocated (e.g. digital television). Such geometric diversity yields low geometric dilution of precision (GDOP) factors, which results in a precise PNT solution.

High carrier frequencyThe current cellular carrier frequency ranges between 800 MHz and 1900 MHz, which yields precise carrier phase navigation observables. Future 5G networks will tap into frequencies between 30 and 300 GHz.

Large bandwidthCellular signals have a large bandwidth, which yields accurate time‐of‐arrival (TOA) estimation (e.g. the bandwidth of certain cellular long‐term evolution (LTE) reference signals is up to 20 MHz).

High transmitted powerCellular signals are often available and usable in environments where global navigation satellite system (GNSS) signals are challenged (e.g. indoors and in deep urban canyons). The received carrier‐to‐noise ratio, C/N0, from nearby cellular BTSs is more than 20 dB‐Hz than that received from GPS space vehicles (SVs).

Free to useThere is no deployment cost associated with using cellular signals for PNT – the signals are practically free to use. Specifically, the user equipment (UE) could “eavesdrop” on the transmitted cellular signals without communicating with the BTS, extract necessary PNT information from received signals, and calculate the navigation solution locally. While other navigation approaches requiring two‐way communication between the UE and BTS (i.e. network‐based) exist, this chapter focuses on explaining how UE‐based navigation could be achieved.

Regardless of whether GNSS signals are available or not, cellular signals of opportunity could be used to produce or improve the navigation solution. In the absence of GNSS signals, cellular signals could be used to produce a navigation solution in a stand‐alone fashion or to aid the inertial navigation system (INS) [1–6]. When GNSS signals are available, cellular signals could be fused with GNSS signals, yielding a navigation solution that is superior to a stand‐alone GNSS solution, particularly in the vertical direction [7, 8].

Cellular signals are not intended for PNT. Therefore, to use these signals for such purpose, several challenges must be addressed. This has been the subject of extensive research over the past few years. These challenges and potential remedies are summarized next.

Cellular signals are modulated and subsequently transmitted for non‐PNT purposes. These signals are much more complicated than GNSS signals, and extracting relevant PNT information from them is not straightforward. Recent research has focused on deriving appropriate low‐level models to optimally extract states and parameters of interest for PNT from received cellular signals. The effect of different propagation channels on such signals is an ongoing area of research [9–15].

GNSS receivers are commercially available, and there is a rich body of literature on GNSS receiver design. This is not the case for cellular navigation receivers. The recent literature has published specialized receiver designs for producing navigation observables from received cellular signals (e.g. code phase, carrier phase, and Doppler frequency) [16–19].

GNSS SVs are equipped with atomic oscillators and are tightly synchronized. However, cellular towers are equipped with less stable oscillators, typically oven‐controlled crystal oscillators (OCXOs), and are less tightly synchronized. This is because communication synchronization requirements are less stringent than PNT synchronization requirements. Timing errors arising due to this somewhat loose synchronization could introduce tens of meters of localization error. Researchers have been modeling such errors and synthesizing PNT estimators that compensate for them [20–25].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century»

Представляем Вашему вниманию похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century»

Обсуждение, отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x