Position, Navigation, and Timing Technologies in the 21st Century

Здесь есть возможность читать онлайн «Position, Navigation, and Timing Technologies in the 21st Century» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Position, Navigation, and Timing Technologies in the 21st Century: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Position, Navigation, and Timing Technologies in the 21st Century»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications.
Volume 1 of
contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume.
Volume 2 of
consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment.
In addition, this text:
Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT
will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies.pnt21book.com

Position, Navigation, and Timing Technologies in the 21st Century — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Position, Navigation, and Timing Technologies in the 21st Century», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The global state estimate and associated standard deviation result for this simulation are shown in Figure 36.7. The shape of the uncertainty bound clearly shows the effects described above. As the likelihood of each integer ambiguity realization changes, the overall uncertainty changes and eventually collapses to the centimeter level.

Finally, the associated normalized filter weights for a subset of the integer ambiguity realizations are shown in Figure 36.8. As expected, the highly unlikely edge integers quickly collapse. The integers closer to the mean take longer to resolve. It is important to note that the resulting uncertainty is dependent on the actual measurement realization sequence received; thus, each realization would produce a different uncertainty ( Table 36.2). This is a notable difference from the standard linear Kalman filter, where the uncertainty is independent of the observed measurements. Finally, it is important to note that, in this example, the state estimate and uncertainty of the MMAE filter are truly optimal (i.e. minimum mean square error). This would not be the case if the integer ambiguity were resolved using a more traditional approach (e.g. float estimate with an ad hoc fixing stage). This is an interesting property of the Gaussian sum filter and sets the stage for us to investigate additional nonlinear estimation techniques.

Table 36.2 Summary of filter classes

Linear and extended Kalman filter
Strengths Weaknesses Use case
Optimal for linear Gaussian systemsComputationally simple Suboptimal approximation for nonlinear systems, can be prone to divergence Linear, or close‐to‐linear, Gaussian problems
Gaussian sum filter
Strengths Weaknesses Use case
Optimal for linear Gaussian systems with discrete parameter vector If parameter vector is not discrete, the differences must be observableConservative tuning can mask difference between models and reduce performanceIncreased computation requirements over simple Kalman filter Linear, or close‐to‐linear, Gaussian problems with discrete parameters
Grid particle filter
Strengths Weaknesses Use case
Optimal solution when state space consists of discrete elementsSuitable for wide range of nonlinear conditions Computational requirements can be excessiveProcessing requirements scale geometrically with the number of dimensionsDiscretizing continuous state space results in suboptimal performance Nonlinear problems with lower dimensionality
Sampling particle filter
Strengths Weaknesses Use case
Can produce nearly optimal solution for nonlinear problemsComputational requirements can be reduced over a grid particle filter via importance sampling strategies Maintaining good particle distribution can be difficultLack of repeatability from run to runComputational requirements can still be large Nonlinear problems with higher dimensionality
Figure 363 Sample vehicle trajectory and observations Note that the range - фото 75

Figure 36.3 Sample vehicle trajectory and observations. Note that the range observations are accurate but not precise and the phase observations are precise but not accurate. Our goal is to accurately estimate the joint pdf of this system.

Figure 364 MMAE initial state estimate and position density function Note the - фото 76

Figure 36.4 MMAE initial state estimate and position density function. Note the position density function is extremely multi‐modal due to the limited information available at this point.

Figure 365 MMAE state estimate after 22 observations Range observations - фото 77

Figure 36.5 MMAE state estimate (after 22 observations). Range observations combined with the vehicle dynamics model are eliminating unlikely integer ambiguity values.

Figure 366 MMAE state estimate after 100 observations Note the state - фото 78

Figure 36.6 MMAE state estimate (after 100 observations). Note the state estimate is almost completely unimodal and has converged to the correct integer ambiguity.

36.3.4 Particle Filters

As mentioned in Section 36.3, the key requirement of a nonlinear filter is the ability to accurately represent arbitrary probability density functions. Particle filters accomplish this by representing density functions by using collections of discrete, weighted state vectors instances. These state vectors and associated weights are referred to as particles.

Figure 367 MMAE position error and onesigma uncertainty Note that the error - фото 79

Figure 36.7 MMAE position error and one‐sigma uncertainty. Note that the error uncertainty collapses once sufficient information is available to resolve the integer ambiguity.

The development of the theory related to a particle‐based representation of density functions begins by reviewing the essential properties of both the probability density function and the cumulative distribution function. An example cdf and pdf are shown in Figure 36.9. The cumulative distribution function is a monotonically increasing function which represents the probability of a random variable realization that is less than the operand and can be defined as the integral of the density function [11]:

(36.64) Position Navigation and Timing Technologies in the 21st Century - изображение 80

(36.65) Position Navigation and Timing Technologies in the 21st Century - изображение 81

Additionally, the probability of a random variable realization between a range x aand x bis expressed by

(36.66) Position Navigation and Timing Technologies in the 21st Century - изображение 82

(36.67) Position Navigation and Timing Technologies in the 21st Century - изображение 83

As a result, the density and cumulative distribution functions must have the following properties:

(36.68) Position Navigation and Timing Technologies in the 21st Century - изображение 84

(36.69) Position Navigation and Timing Technologies in the 21st Century - изображение 85

(36.70) Position Navigation and Timing Technologies in the 21st Century - изображение 86

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century»

Представляем Вашему вниманию похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century»

Обсуждение, отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x