Position, Navigation, and Timing Technologies in the 21st Century

Здесь есть возможность читать онлайн «Position, Navigation, and Timing Technologies in the 21st Century» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Position, Navigation, and Timing Technologies in the 21st Century: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Position, Navigation, and Timing Technologies in the 21st Century»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications.
Volume 1 of
contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume.
Volume 2 of
consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment.
In addition, this text:
Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT
will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies.pnt21book.com

Position, Navigation, and Timing Technologies in the 21st Century — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Position, Navigation, and Timing Technologies in the 21st Century», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(36.32) Position Navigation and Timing Technologies in the 21st Century - изображение 40

(36.33) Position Navigation and Timing Technologies in the 21st Century - изображение 41

In the previous development, it was assumed that the system model parameters (i.e. were known Let us now consider the situation where some of the system model - фото 42) were known. Let us now consider the situation where some of the system model parameters are unknown.

To address this situation, we can define a vector of the unknown system parameters, a, and jointly estimate these parameters along with the state vector. In other words, we must now solve for the following density:

(36.34) which after applying Bayes rule can be expressed as 3635 It is - фото 43

which, after applying Bayes’ rule, can be expressed as

(36.35) It is important to note that this expression is the product of the - фото 44

It is important to note that this expression is the product of the “known‐system model” pdf, p ( x k| a, ℤ k), and a new density function, p ( a| ℤ k), which is the pdf of the unknown system parameters, conditioned on the observation set. Assuming a∈ ℝ n, the parameter density can be written as

(36.36) Applying Bayes rule yields 3637 Marginalizing the denominator about the - фото 45

Applying Bayes’ rule yields

(36.37) Marginalizing the denominator about the parameter vector results in a more - фото 46

Marginalizing the denominator about the parameter vector results in a more familiar form:

(36.38) where p z k a ℤ k1 is the measurement prediction density which given - фото 47

where p ( z k| a, ℤ k−1) is the measurement prediction density, which, given our linear observation model, is expressed as the following normal distribution:

(36.39) Unfortunately the integral in the denominator is intractable in general which - фото 48

Unfortunately, the integral in the denominator is intractable in general, which requires an additional constraint. If the system parameters can be chosen from a finite set (e.g. a∈ { a [1], a [2], ⋯, a [j]}), the parameter density can be expressed as the sum of the individual probabilities of the finite set. This results in a system parameter pdf defined as

(36.40) where is the probability of the jth parameter vector at time k1 and δ - фото 49

where картинка 50is the probability of the j‐th parameter vector at time k‐1 , and δ (·) is the delta function. It can be observed that the sum of the weights must be unity in order to represent a probability density. Substituting Eq. 36.40into Eq. 36.38:

(36.41) Moving the position of the summation operators and parameter weight vector - фото 51

Moving the position of the summation operators and parameter weight vector:

(36.42) The properties of the delta function can be exploited to rewrite the numerator - фото 52

The properties of the delta function can be exploited to rewrite the numerator and eliminate the integral from the denominator:

(36.43) At this point we have established the posterior pdf of the parameter vector as - фото 53

At this point, we have established the posterior pdf of the parameter vector as a finite weighted set. Revisiting our system parameter pdf, now defined at time k

(36.44) and substituting into Eq 3643yields the parameter density update relationship - фото 54

and substituting into Eq. 36.43yields the parameter density update relationship

(36.45) In the above equation the predicted measurement pdf p z k a j ℤ k 1 - фото 55

In the above equation, the predicted measurement pdf, p ( z k| a [j], ℤ k − 1), is evaluated at the measurement realization at time k , which yields the likelihood of realizing the current measurement, conditioned on the parameter set j . As mentioned previously, these likelihood values are based on the following evaluation of a normal density function:

(36.46) where z kis the measurement realization at time k This likelihood is - фото 56

where z kis the measurement realization at time k . This likelihood is equivalent to the likelihood of the residual from a Kalman filter tuned to the j‐th parameter vector, a [j].

Practically speaking, the parameter pdf consists of the discrete (fixed) parameter set and the associated weights (likelihood) at each epoch. The parameter density update shown in Eq. 36.45shows the evolution of each parameter weight as a function of time, which can be rewritten as

(36.47) Our final task is to determine the overall posterior joint pdf of the system - фото 57

Our final task is to determine the overall posterior joint pdf of the system. Substituting Eq. 36.44into Eq. 36.35, we obtain

(36.48) which when combined with knowledge of the delta function and implementing a - фото 58

which, when combined with knowledge of the delta function and implementing a straightforward rearrangement of terms produces the joint posterior density function

(36.49) This pdf is clearly a weighted sum of Gaussian densities each of these - фото 59

This pdf is clearly a weighted sum of Gaussian densities, each of these densities corresponding to the posterior state estimate of an individual Kalman filter, tuned to the parameter vector a [j]. The blended posterior state estimate and covariance are given by

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century»

Представляем Вашему вниманию похожие книги на «Position, Navigation, and Timing Technologies in the 21st Century» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century»

Обсуждение, отзывы о книге «Position, Navigation, and Timing Technologies in the 21st Century» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x