Smart Buildings, Smart Communities and Demand Response

Здесь есть возможность читать онлайн «Smart Buildings, Smart Communities and Demand Response» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Smart Buildings, Smart Communities and Demand Response: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Smart Buildings, Smart Communities and Demand Response»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book focuses on near-zero energy buildings (NZEBs), smart communities and microgrids. In this context, demand response (DR) is associated with significant environmental and economic benefits when looking at how electricity grids, communities and buildings can operate optimally. In DR, the consumer becomes a prosumer with an important active role in the exchange of energy on an hourly basis. DR is gradually gaining ground with respect to the reduction of peak loads, grid balancing and dealing with the volatility of renewable energy sources (RES). This transition calls for high environmental awareness and new tools or services that will improve the dynamic as well as secure multidirectional exchange of energy and data. Overall, DR is identified as an important field for technological and market innovations aligned with climate change mitigation policies and the transition to sustainable smart grids in the foreseeable future. Smart Buildings, Smart Communities and Demand Response provides an insight into various intrinsic aspects of DR potential, at the building and the community level.

Smart Buildings, Smart Communities and Demand Response — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Smart Buildings, Smart Communities and Demand Response», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Structure

Firstly, a comprehensive approach for evaluating the performance of industrial and residential smart energy buildings/NZEBs is presented. A detailed audit of construction characteristics, installed systems and controls is conducted and presented. Subsequently, holistic data from advanced metering and sensor equipment are explored to verify energy consumption and actual building energy performance. Dynamic energy models are developed, validated and tested to explore key aspects of the operational behavior of buildings and systems, and draw essential knowledge about their performance. Consumption data based on real measurements is compared, on one hand, with dynamic building model simulation results and on the other hand, with the initial annual energy consumption, obtained via the building’s energy efficiency certification scheme prior to construction. Findings are explored to address the actual performance gap, reflect on the limitations of each approach and highlight important conclusions.

Secondly, the book focuses on how DR can be applied at the building level. A novel evaluation and optimization methodology, in the context of the building level DR, is presented. To this end, DR is assessed with the aid of an RTP scheme based on the actual energy market data. In this context, HVAC system performance is evaluated according to the energy consumption, the corresponding energy costs and the indoor thermal comfort.

Thirdly, the book describes how DR can be applied at the community level by exploiting predictions of day-ahead consumption and/or production and load shifting. The benefits of this approach are evaluated in terms of the economic savings based on a flat versus ToU tariff and an RTP scheme. The reliable prediction of power consumption and/or production 24 hours ahead is performed using artificial neural network modeling, whereas load shifting optimization is conducted using a genetic algorithm dual-objective optimization algorithm.

In Chapter 2, the smart and zero energy building facilities used as case studies for evaluating DR at the building and the community levels are presented.

Chapter 3provides a thorough analysis of the performance of residential and industrial buildings with the aid of measurements and how they can be utilized for building energy modeling and validation purposes.

Chapter 4presents a newly developed approach for optimizing the operation of HVAC systems from a DR perspective.

Chapter 5presents a novel approach for the community level prediction and optimization in a DR setting.

Finally, the overall conclusions and recommendations arising from the findings of this research are presented.

Acknowledgments

The editors express their deepest appreciation to all the authors for their contribution and to the European Commission, for allocating the funds in order for the Smart GEMS project to be implemented. Special thanks are owed to Dr. Cristina Cristalli, Head of Research for Innovation in the Loccioni Group and to the Loccioni Group for providing access and support for research activities in the framework of Smart GEMS project to be conducted in their industrial high-end facilities.

Nikos KAMPELIS

September 2020

Nomenclature

Acronyms

AC Alternating Current
AMI Advanced Metering Infrastructure
ANN Artificial Neural Network
ARC Aggregators or Retail Customers
AS Ancillary Services
BEMS Building Energy Management System
biPV Building-Integrated PhotoVoltaic
CHP Cogeneration of Heat and Power
CO 2-eq Carbon Dioxide Equivalent Emissions
COP Coefficient Of Performance
CPP Critical Peak Pricing
CSP Curtailment Service Provider
Cv Coefficient of Variance
DA Day Ahead
DARTP Day-Ahead Real-Time Pricing
DC Direct Current
DEMS District Energy Management Systems
DER Distributed Energy Resources
DG Diesel Generator
DHW Domestic Hot Water
DR Demand Response
DRP Demand Response Providers
DSM Demand Side Management
DSO Distribution System Operator
EED Energy Efficiency Directive
EER Energy Efficiency Ratio
EMS Energy Management System
ESCO Energy Service COmpany
FC Fuel Cell
GA Genetic Algorithm
HRES Hybrid Renewable Energy System
HVAC Heating, Ventilation and Air Conditioning
ID Integrated Design
IoT Internet of Things
IPMVP International Performance Measurement and Verification Protocol
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MILP Mixed Integer Linear Programming
MINLP Mixed Integer NonLinear Programming
MIP Mixed Integer Programming
MPPT Maximum Power Point Tracking
MT Micro-Turbine
NARX Nonlinear AutoRegressive ANN with eXogenous input
NIST National Institute of Standards and Technology
NZEB Near-Zero Energy Building
OpenADR Open Automated Demand Response
PMV Predicted Mean Vote
PPD Percentage of People Dissatisfied
PSO Particle Swarm Optimization
PV PhotoVoltaic
RES Renewable Energy Sources
RH Relative Humidity
RMSE Root Mean Squared Error
RTO Regional Transmission Operator
RTP Real-Time Pricing
SaaS Software as a Service
SDG Sustainable Development Goal
ToU Time of Use
VEN Virtual End Node
VTN Virtual Transfer Node
WT Wind Turbine
ZEB Zero Energy Building

Symbols

C i Day-ahead price per hour for hours 1–24
C _( E , T ) Total energy plus taxes (€)
картинка 2 Day-ahead hourly unit cost of energy in each building (€/kWh)
C T Total tax charges (€)
C S Energy procurement cost (€)
C N Network services cost (€)
C S,F Energy procurement fixed cost component (€/kWh)
C EDD Daily excise duty on electricity and taxes (€)
C v,u Various costs normalized per kWh (€/Wh)
C F Fixed cost component (€)
C pmax Maximum power cost component (€/kW)
C AT Active energy cost component (€/kWh)
C A–UC Fixed cost for up to 4 GWh per month (€/kWh
C EDH Excise duty per kWh (€/kWh)
C FAA Parameter to account for F, AT, and A-UC components (€/kWh)
C pmax,F Maximum power fixed cost component (€/kW)
Icl Clothing insulation (m 2K/W)
IVA Value added tax (€)
Load Shift Daily load shift (kWh)
картинка 3 GA optimized hourly electrical energy (kWh) at building or building group level
M Metabolic rate (W/m 2)
P i Hourly average power consumption of the HVAC in kW (equivalent to kWh)
картинка 4 Hourly temperature set points of the HVAC system the next day
C ost E Daily energy operating costs (€)
C ost E_Lap Daily energy operating costs of Leaf Lab (L4) building (€)
C ost E_Summa Daily energy operating costs of Summa (L2) building (€)
C ost E__kite Daily energy operating costs of Kite (L5) building (€)
DA h Day-ahead market prices (€/kWh)
DA N,h DA price flexible factor per hour ℎ (€/kWh)
R Pearson’s coefficient
RH Relative humidity (%)
T air Air temperature (T air) (°C)
Tr Mean radiant temperature (°C)
Vair Relative air velocity (m/s)
W Effective mechanical power (W/m 2)
W c Weighting coefficient for the daily operational cost of energy for the HVAC
w pmv Weighting coefficient for the daily thermal comfort
картинка 5 Hourly value of total energy consumption in each building (kWh)
картинка 6 Baseline hourly electrical energy (kWh) based on day-ahead neural network predictions

Chapter written by Nikos KAMPELIS.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Smart Buildings, Smart Communities and Demand Response»

Представляем Вашему вниманию похожие книги на «Smart Buildings, Smart Communities and Demand Response» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Smart Buildings, Smart Communities and Demand Response»

Обсуждение, отзывы о книге «Smart Buildings, Smart Communities and Demand Response» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x