97. Brar, S.K. and Verma, M., Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem. , 30, 4–17, 2011.
98. Hall, J.B., Dobrovolskaia, M.A., Patri, A.K., McNeil, S.E., Characterization of nanoparticles for therapeutics. Nanomedicine (Lond.) , 2, 789–803, 2007.
99. Kumar, R., Siril, P.F., Soni, P., Preparation of nano-RDX by evaporation assisted solvent antisolvent interaction. Propellants Explos. Pyrotech. , 39, 383–389, 2014.
100. Kumar, R., Siril, P.F., Soni, P., Optimized synthesis of HMX nanoparticles using antisolvent precipitation method. J. Energ. Mater. , 33, 277–287, 2015.
101. Su, D., Advanced electron microscopy characterization of nanomaterials for catalysis. Green Energy Environ. , 2, 2, 70–83, 2017.
102. Gaisin, N.K., Gnezdilov, O.I., Pashirova, T.N., Zhil’tsova, E.P., Lukashenko., S.S., Aakharova, L.Y. et al. , Micellar and liquid-crystalline properties of bicyclic fragment-containing cationic surfactant. Colloid J. , 72, 764–770, 2010.
103. Bibi, S., Kaur, R., Henriksen-Lacey, M., McNeil, S.E., Wilkhu, J., Lattmann, E. et al. , Microscopy imaging of liposomes: from coverslips to environmental SEM. Int. J. Pharm. , 417, 138–150, 2011.
104. Rissi, N.C., Guglielmi, D.A.S., Corrêa, M.A., Chiavacci, L.A., Relationship between composition and organizational levels of nanostructured systems formed by Oleth 10 and PPG-5-Ceteth-20 for potential drug delivery. BJPS , 50, 653–661, 2014.
105. Eaton, P. and West, P., Atomic force microscopy , Oxford University Press, United Kingdom, 2010.
106. Hanley, S.J. and Gray, D.G., Atomic force microscopy , CRC Press Inc., Boca Raton, FL, 1995.
107. Xu, R., Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology , 6, 112–115, 2008.
108. Chorom., M. and Rengasamy, P., Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci. , 46, 657–665, 1995.
109. Wendlandt, W.W., Thermal methods of analysis , Wiley-Interscience, New York, 1974.
110. Kumar, D., Kapoor, I.P., Singh, G., Siril, P.F., Tripathi, A.M., Preparation, characterization, and catalytic activity of nanosized NiO and ZnO: part 74 . Propellants. Explos. Pyrotech. , 36, 268–272, 2011.
111. Kumar, R., Siril, P.F., Soni, P., Tuning the particle size and morphology of high energeticmaterial nanocrystals. Def. Technol. , 11, 382–389, 2015.
112. Chauhan, H., Mohapatra, S., Munt, D.J., Chandratre, S., Dash, A., Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles. AAPS Pharm. Sci. Tech. , 17, 640–651, 2016.
113. Stuart, B., Infrared spectroscopy , pp. 1–20, Wiley Online Library, Germany, 2005.
114. Kumar, R., Siril, P.F., Javid, F., Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C , 69, 1335–1344, 2016.
115. Suryanarayana, C. and Norton, M.G., X-ray diffraction: a practical approach , Springer Science & Business Media, Germany, 2013.
116. Esposito, E., Mariani, P., Drechsler, M., Cortesi, R., Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM), in: Handbook of Nanoparticles , M. Aliofkhazraei (Ed.), Springer, Cham, 2016.
117. Faix, O., Fourier transform infrared spectroscopy, in: Methods in lignin chemistry , pp. 233–241, Springer, Germany, 1992.
118. Kumar, R. and Siril, P.F., Enhancing the solubility of fenofibrate by nanocrystal formation and encapsulation. AAPS Pharm. Sci. Tech. , 19, 284–292, 2018.
119. Nekkanti, V. and Kalepu, S., Recent Advances in Liposomal Drug Delivery: A Review. Pharm. Nanotechnol. , 3, 35–55, 2015.
120. Khan, I., Kumar, H., Mishra, G., Gothwal, A., Kesharwani, P., Gupta, U., Polymeric Nanocarriers: A New Horizon for the Effective Management of Breast Cancer. Curr. Pharm. Des. , 23, 5315–5326, 2018.
121. Dong, Y.D., Tchung, E., Nowell, C., Kaga, S., Leong, N., Mehta, D. et al. , Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J. Liposome Res. , 29, 1–9, 2019.
122. Hua, S. and Wu, S.Y., The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. , 4, 143, 2013.
123. Hua, S. and Cabot, P.J., Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: A potential novel treatment of acute and chronic pain conditions. Pain Physician , 16, 199–216, 2013.
124. Ghasemiyeh, P. and Mohammadi-Samani, S., Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. , 13, 288–303, 2018.
125. Tabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.M., Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer. Eur. J. Pharm. Biopharm. , 57, 155–162, 2004.
126. Pedersen, N., Hansen, S., Heydenreich, A.V., Kristensen, H.G., Poulsen, H.S., Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur. J. Pharm. Biopharm. , 62, 155–162, 2006.
127. Fatouh, A.M., Elshafeey, A.H., Abdelbary, A., Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Devel. Ther. , 11, 1815–1825, 2017.
128. Khosa, A., Reddi, S., Saha, R.N., Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. , 103, 598–613, 2018.
129. Song, S., Mao, G., Du, J., Zhu, X., Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv. , 23, 1404–1408, 2016.
130. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., Rossi, C., Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. , 59, 454–477, 2007.
131. Ahmad, N., Ahmad, R., Alam, M.A., Samim, M., Iqbal, Z., Ahmad, F.J., Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int. J. Biol. Macromol. , 88, 320–332, 2016.
132. Fenske, D.B. and Cullis, P.R., Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol. , 391, 7–40, 2005.
133. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. , 2, 626–639, 2011.
134. Shalaev, E., Wu, K., Shamblin, S., Krzyzaniak, J.F., Descamps, M., Crystalline mesophases: Structure, mobility, and pharmaceutical properties. Adv. Drug Deliv. Rev. , 100, 194–211, 2016.
135. Descamps, G., Wattiez, R., Saussez, S., Proteomic study of HPV-positive head and neck cancers: Preliminary results. Biomed. Res. Int. , 2014, 430906, 2014.
136. Wang, L., Cho, H., Lee, S.H., Lee, C., Jeong, K.U., Lee, M.H., Liquid crystalline mesophases based on symmetric tetrathiafulvalene derivatives. J. Mater. Chem. , 21, 60–64, 2011.
137. Shankar, R., Rowe, C., Van Hoorn, A., Henley, W., Laugharne, R., Cox, D. et al. , Under representation of people with epilepsy and intellectual disability in research. PLoS One , 13, e0198261, 2018.
138. Yu, S., Bi, X., Yang, L., Wu, S., Yu, Y., Jiang, B. et al. , Co-delivery of paclitaxel and PLK1-targeted siRNA using aptamer-functionalized cationic liposome for synergistic anti-breast cancer effects in vivo . J. Biomed. Nanotechnol. , 15, 6, 1135–1148, 2019.
Читать дальше