17. Olbrich, C., GeBner, A., Kayser, O., Muller, R.H., Lipid drug conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediacetu-rate. J. Drug Targeting , 10, 387–396, 2002.
18. Mueller., E.A., Kovarik, J.M., vanBree, J.B., Tetzloff, W., Grevel, J., Kutz, K., Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm. Res. , 11, 301–304, 1994.
19. Sawant, R.R. and Torchilin, V.P., Challenges in Development of Targeted Liposomal Therapeutics. AAPS J. , 14, 303–315, 2012.
20. Kong, X., Yu, K., Yu, M., Feng, Y., Wang, J., Li, M., A novel multifunctional poly (amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted 22 Nanopharmaceutical Advanced Delivery Systems delivery of the chemotherapy drug 10-hydroxycamptothecin. Int. J. Pharm. , 465, 378–387, 2014.
21. Tila, D., Ghasemi, S., Yazdani-Arazi, S.N., Ghanbarzadeh, S., Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl. , 30, 3–16, 2015.
22. Deamer, D.W., From “Banghasomes” to liposomes: A memoir of Alec Bangham, 1921-2010. FASEB J. , 24, 1308–1310, 2010.
23. Swaminathan, J. and Ehrhardt, C., Liposomal delivery of proteins and peptides. Expert Opin. Drug Deliv. , 9, 1489–1503, 2012.
24. Garg, T.K. and Goyal, A., Liposomes: targeted and controlled delivery system. Drug Deliv. , 4, 62–71, 2014.
25. Xing, H., Hwang, K., Lu, Y., Recent Developments of Liposomes as Nanocarriers for theranostic applications. Theranostic , 6, 1336–1352, 2016.
26. Blume, G. and Cevc, G., Molecular mechanism of lipid vesicles longevity in-vivo . Biochim. Biophys. Acta , 1146, 157–168, 1993.
27. Allen, T.M. and Cullis, P.R., Liposomal drug delivery system from concept to clinical applications. Adv. Drug Deliv. , 65, 36–48, 2013.
28. Kaneda, Y., Virosomes: evolution of the liposome as a targeted drug delivery system. Adv. Drug Deliv. Rev. , 43, 197–205, 2000.
29. Samad, A., Sultana, Y., Aqil, M., Liposomal drug delivery systems: an update review. Curr. Drug Deliv. , 4, 297–305, 2007.
30. Couvreur, P., Dubernet, C., Puisieux, F., Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur. J. Pharm. Biopharm. , 41, 2–13, 1995.
31. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release , 70, 1–20, 2001.
32. Smith, A., Evaluation of poly (lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm. , 30, 215–220, 1986.
33. Muller, R.H., Mader, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. , 50, 1, 161–177, 2000.
34. Mehnert, W. and Mader, K., Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. , 47, 165–196, 2001.
35. Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L., Lou, H., Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release , 133, 238–244, 2009.
36. Uner, M. and Yener, G., Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine , 3, 289–300, 2007.
37. Harde, H., Das, M., Jain, S., Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. , 8, 1407–1424, 2011.
38. M.R. Gasco, Method for Producing Solid Lipid Microspheres Having a Narrow Size Distribution, US Patent-US5250236A, 1993.
39. Ochekpe, N.A., Olorunfemi, P.O., Ngwuluka, N.C., Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop. J. Pharm. , 8, 275–287, 2009.
40. Khurana, S., Utreja, P., Tiwary, A., Jain, N., Jain, S., Nanostructured lipid carriers and their application in drug delivery. Int. J. Biomed. Eng. Technol. , 2, 152–171, 2009.
41. Iqbal, M.A., Md, S., Sahni, J.K., Baboota, S., Dang, S., Ali, J., Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Targeting , 10, 813–830, 2012.
42. Ranpise, N.S., Korabu, S.S., Ghodake, V.N., Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf. B Biointerfaces , 116, 81–87, 2014.
43. Tiwari, R. and Pathak, K., Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm. , 415, 232–243, 2011.
44. Nanjwade, B.K., Patel, D.J., Udhani, R.A., Manvi., F.V., Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci. Pharm. , 79, 705–727, 2011.
45. Tamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A., Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. , 19, 29–43, 2013.
46. Chime, S., Kenechukwu, F., Attama, A., Nanoemulsions-advances in formulation, characterization and applications in drug delivery, in: Application of Nanotechnology in Drug Delivery , A.D. Sezer (Ed.), pp. 77–11, IntechOpen Limited, London, 2014.
47. Jaiswal., M., Dudhe, R., Sharma, P., Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech , 5, 123–127, 2015.
48. Thiagarajan, P., Nanoemulsion for drug delivery through different routes. Res. Biotechnol. , 2, 1–13, 2011.
49. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol. , 2, 626–639, 2011.
50. Pande, S.V. and Biyani, K.R., Microencapsulation by solvent evaporation method of BCS Class 4 drugs for bioavailability enhancement. J. Drug Deliv. Ther. , 6, 18–30, 2016.
51. Mundhe, A.V., Fuloria, N.K., Biyani, K.R., Cocrystallization: an alternative approach for solid modification. J. Drug Deliv. Ther. , 3, 166–172, 2013.
52. Shelke, P.V., Dumbare, A.S., Gadhave, M.V., Jadhav, S.L., Sonawane, A.A., Gaikwad, D.D., Formulation and evaluation of rapidly dis integrating film of amlodipine besylate. J. Drug Deliv. Ther. , 2, 72–75, 2012.
53. Maurya, S.D., Arya, R.K.K., Rajpal, G., Dhakar, R.C., Self-micro emulsifying drug delivery systems (SMEDDs): A review on physico-chemical and biopharmaceutical aspects. J. Drug Deliv. Ther. , 7, 55–65, 2017.
54. Agrawal, S., Giri, T.K., Tripathi, D.K., Ajazuddin, Alexander, A., A review on noval therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid based Self Micro Emulsifying Drug Delivery System: A Novel Approach. Am. J. Drug Discov. , 2, 143–183, 2012.
55. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. , 58, 173–182, 2004.
56. Wu, W., Wang, Y., Que, L., Enhanced bioavailability of silymarin by self-micro emulsifying drug delivery system. Eur. J. Pharm. Biopharm. , 63, 288–294, 2006.
57. Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G. et al. , Development of self-micro emulsifying drug delivery systems (SMEDDs) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm. , 274, 65–73, 2004.
58. Ishiwa, J., Sato, T., Mimaki, Y., Sashida, Y., Yano, M., Ito, A., A citrus flavonoid, nobiletin, suppresses production and gene expression of matrixmetalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J. Rheumatol. , 27, 20–25, 2000.
Читать дальше