John Paul Mueller - Machine Learning For Dummies

Здесь есть возможность читать онлайн «John Paul Mueller - Machine Learning For Dummies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning For Dummies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning For Dummies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Your
 comprehensive entry-level guide to machine learning
While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie 
—it 
 a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit- scoring, building accurate and sophisticated pricing models—and way, way more. 
Unlike most machine learning books, the fully updated 2nd Edition of 
doesn’t assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don’t need to be a math whiz to build fun new tools and apply them to your work and study. 
Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner’s guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that’s impacting lives for the better all over the world.

Machine Learning For Dummies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning For Dummies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

11 Index

12 About the Authors

13 Advertisement Page

14 Connect with Dummies

15 End User License Agreement

List of Tables

1 Chapter 1 TABLE 1-1: Comparing Machine Learning to Statistics

2 Chapter 5 TABLE 5-1 Python Numeric Data Types TABLE 5-2 Python Assignment Operators TABLE 5-3 Python Arithmetic, Unary, and Bitwise Operators TABLE 5-4 Python Relational and Logical Operators TABLE 5-5 Python Membership and Identity Operators TABLE 5-6 Python Operator Precedence

List of Illustrations

1 Chapter 2FIGURE 2-1: The five tribes will combine their efforts toward the master algori...

2 Chapter 4FIGURE 4-1: Tell the wizard how to install Anaconda on your system.FIGURE 4-2: Configure the advanced installation options.FIGURE 4-3: Anaconda Navigator provides centralized access to every development...FIGURE 4-4: Jupyter Notebook provides an easy method to create machine learning...FIGURE 4-5: New folders will appear with a name of Untitled Folder.FIGURE 4-6: A notebook contains cells that you use to hold code.FIGURE 4-7: Notebook uses cells to store your code.FIGURE 4-8: The files that you want to add to the repository appear as part of ...FIGURE 4-9: The read_dfobject contains the loaded dataset as a dataframe.

3 Chapter 6FIGURE 6-1: Using Colab commands makes configuring your Notebook easy.FIGURE 6-2: The Settings dialog box helps you configure the Colab IDE.FIGURE 6-3: Customize shortcut keys for speed of access to commands.FIGURE 6-4: Colab lets you compare two files to see how they differ.FIGURE 6-5: Follow the prompts to create your Google account.FIGURE 6-6: The sign-in page gives you access to all the general features, incl...FIGURE 6-7: Create a new Python 3 Notebook using the same techniques as normal.FIGURE 6-8: Use this dialog box to open existing notebooks.FIGURE 6-9: When using GitHub, you must provide the location of the source code...FIGURE 6-10: Your output may differ from the book's output when using Colab.FIGURE 6-11: Colab maintains a history of the revisions for your project.FIGURE 6-12: Using GitHub means storing your data in a repository.FIGURE 6-13: Use Gists to store individual files or other resources.FIGURE 6-14: Colab code cells contain a few extras not found in Notebook.FIGURE 6-15: Use Cell panes to keep key cells easily available as needed.FIGURE 6-16: Colab code cells contain a few extras not found in Notebook.FIGURE 6-17: Use the GUI to make formatting your text easier.FIGURE 6-18: The table of contents makes Notebook information more accessible.FIGURE 6-19: Hardware acceleration speeds code execution.FIGURE 6-20: The notebook information includes both size and settings.FIGURE 6-21: Colab tracks which code you execute and in what order.FIGURE 6-22: Send a message or obtain a link to share your notebook.

4 Chapter 8FIGURE 8-1: A lack of evidence makes it hard to map back to the target function...FIGURE 8-2: Noise can cause mismatches in the data points.FIGURE 8-3: A plotting of parameter data against the output of the cost functio...FIGURE 8-4: Visualizing the effect of starting point on outcome.

5 Chapter 9FIGURE 9-1: Example of a linear model struggling to map a curve function.FIGURE 9-2: A K-Nearest Neighbor model correctly fitting the problem on the lef...FIGURE 9-3: Learning curves affected by high bias (left) and high variance (rig...FIGURE 9-4: A graphical representation of how cross-validation works.FIGURE 9-5: Comparing grid-search to random-search.

6 Chapter 10FIGURE 10-1: The separating line of a perceptron across two classes.FIGURE 10-2: A visualization of the decision tree built from the play tennis da...FIGURE 10-3: A visualization of the pruning alphas and their impurity cost.FIGURE 10-4: A visualization of the pruned decision tree build from the Titanic...

7 Chapter 11FIGURE 11-1: A boxplot of the LSTAT feature from the Boston dataset.FIGURE 11-2: A scatterplot of the first two components of a PCA of the Boston d...FIGURE 11-3: A scatterplot of the last two components of a PCA of the Boston da...

8 Chapter 12FIGURE 12-1: Examples of values plotted as points on a chart.FIGURE 12-2: Clusters of penguins plotted on a chart based on first PCA dimensi...FIGURE 12-3: Plot of the Calinski and Harabasz score regarding different cluste...FIGURE 12-4: Penguin species represented by five clusters.FIGURE 12-5: The bull’s-eye dataset, a nonlinear cloud of points that is diffic...

9 Chapter 13FIGURE 13-1: Adding random features increases in-sample performances but degrad...FIGURE 13-2: Visualizing the different optimization paths on the same data prob...FIGURE 13-3: How R 2varies in training and test sets as iterations increase in ...

10 Chapter 14FIGURE 14-1: Learning logical XOR using a single separating line isn’t possible...FIGURE 14-2: Plots of different activation functions.FIGURE 14-3: An example of the architecture of a neural network.FIGURE 14-4: A detail of the feed-forward process in a neural network.FIGURE 14-5: Overfitting occurs when there are too many learning iterations on ...FIGURE 14-6: Be sure to use the Anaconda prompt for the installation and check ...FIGURE 14-7: Use the TF_env channel for all TensorFlow examples in the book.FIGURE 14-8: The bidimensional half-moon problem.FIGURE 14-9: Dropout temporarily rules out a proportion of the connections from...FIGURE 14-10: Decision boundaries display how a neural network solves the half-...FIGURE 14-11: Some images from the fashion mnist dataset.FIGURE 14-12: A folded and unfolded RNN cell processing a sequence input.FIGURE 14-13: The Air Passenger Data.FIGURE 14-14: Predictions on the last two years of the Air Passenger Data.

11 Chapter 15FIGURE 15-1: Comparing some different approaches: perceptron, logistic regressi...FIGURE 15-2: A case of nonlinearly separable points requiring feature transform...FIGURE 15-3: An RBF kernel that uses diverse hyper-parameters to create unique ...FIGURE 15-4: A polynomial (left) and an RBF kernel (right) applied to the same ...

12 Chapter 16FIGURE 16-1: Comparing a single decision tree output (left) to an ensemble of d...FIGURE 16-2: Seeing the accuracy of ensembles of different sizes.FIGURE 16-3: Permutation importance of features computed on the test set.

13 Chapter 17FIGURE 17-1: The image appears onscreen after you render and show it.FIGURE 17-2: Different filters for different noise cleaning.FIGURE 17-3: Cropping the image makes it smaller.FIGURE 17-4: Considering the effects of filtering, cropping, and resizing the i...FIGURE 17-5: Detection, localization and segmentation example from the Coco dat...FIGURE 17-6: Finding the borders of an image.FIGURE 17-7: The example application would like to find similar photos.FIGURE 17-8: The output shows the results that resemble the test image.FIGURE 17-9: Examples from the training and test sets do differ in pose and exp...

14 Chapter 19FIGURE 19-1: The output shows 1,000,209 cases and 10 features.FIGURE 19-2: You can obtain a wealth of statistics about the movies.

Guide

1 Cover

2 Title Page

3 Copyright

4 Table of Contents

5 Begin Reading

6 Index

7 About the Authors

Pages

1 i

2 ii

3 1

4 2

5 3

6 4

7 5

8 6

9 7

10 8

11 9

12 10

13 11

14 12

15 13

16 14

17 15

18 16

19 17

20 18

21 19

22 20

23 21

24 22

25 23

26 24

27 25

28 26

29 27

30 28

31 29

32 30

33 31

34 32

35 33

36 34

37 35

38 37

39 38

40 39

41 40

42 41

43 42

44 43

45 44

46 45

47 46

48 47

49 48

50 49

51 50

52 51

53 52

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning For Dummies»

Представляем Вашему вниманию похожие книги на «Machine Learning For Dummies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning For Dummies»

Обсуждение, отзывы о книге «Machine Learning For Dummies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x