John Paul Mueller - Machine Learning For Dummies

Здесь есть возможность читать онлайн «John Paul Mueller - Machine Learning For Dummies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning For Dummies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning For Dummies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Your
 comprehensive entry-level guide to machine learning
While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie 
—it 
 a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit- scoring, building accurate and sophisticated pricing models—and way, way more. 
Unlike most machine learning books, the fully updated 2nd Edition of 
doesn’t assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don’t need to be a math whiz to build fun new tools and apply them to your work and study. 
Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner’s guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that’s impacting lives for the better all over the world.

Machine Learning For Dummies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning For Dummies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Understanding the datasets used in this book

Apart from the datasets offered by Scikit-learn ( https://scikit-learn.org/stable/datasets/ ), this book uses a number of datasets that you can access at https://github.com/lmassaron/datasets . These datasets demonstrate various ways in which you can interact with data, and you use them in the examples to perform a variety of tasks. The following list provides a quick overview of the function used to import each of the datasets into your Python code:

Air Passengers ( https://www.kaggle.com/rakannimer/air-passengers ): A .csv file containing the number of passengers on an example airline per month for 12 years starting in 1949.

IMDB 50K ( https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews ): A dataset for binary sentiment classification containing a set of 25,000 highly popular movie reviews for training and 25,000 for testing.

Fashion MNIST ( https://github.com/zalandoresearch/fashion-mnist ): A dataset of Zalando's article ( https://jobs.zalando.com/en/tech/ ) images. It consists of a training set of 60,000 examples and a test set of 10,000 examples, each of which is labeled with one of ten categories.

Palmer Penguins ( https://github.com/allisonhorst/palmerpenguins ): A package containing two datasets collected and made available by Dr. Kristen Gorman and the Palmer Station, Antarctica LTER, a member of the Long Term Ecological Research Network.

Shakespeare ( https://www.kaggle.com/kingburrito666/shakespeare-plays ): A listing of all Shakespeare's plays, lines from these plays, and who is speaking the line.

SMS Spam Collection ( https://www.kaggle.com/uciml/sms-spam-collection-dataset ): A set of SMS tagged messages collected for SMS Spam research. It contains one set of SMS messages in English of 5,574 messages, tagged according to whether the message is ham (legitimate) or spam.

Tennis ( https://www.kaggle.com/ehallmar/a-large-tennis-dataset-for-atp-and-itf-betting ): Dataset containing statistics for a large number of tennis matches from the ATP and ITF leagues.

Titanic ( https://www.openml.org/d/40945 ): A dataset describing the survival status of individual passengers on the Titanic. The titanic data does not contain information from the crew, but it does contain actual ages of half the passengers.

Wine ( https://www.kaggle.com/sgus1318/winedata ): Contains statistics related to the quality of wine.

The technique for loading each of these datasets can vary according to the source. The following example shows how to load the Air Passengers dataset. You can find the code in the ML4D2E; 04; Dataset Load.ipynbnotebook. The downloadable datasets are archived in the Apache Arrow-based Feather File Format ( https://arrow.apache.org/docs/python/feather.html ). To make this file format accessible in Notebook, you open an Anaconda prompt and type the following command:

conda install feather-format -c conda-forge

The command takes a while to complete as it collects the package information and solves the environment (determines what to do to perform the installation). At some point, you'll need to type yand press Enter to complete the installation. To verify that you have a good installation, use this command:

conda list feather-format

After a few moments, you see output similar to this:

# packages in environment at C:\Users\John\anaconda3:## Name Version Build Channelfeather-format 0.4.1 pyh9f0ad1d_0 conda-forge

Now that you have the required library to use, you can load a dataset from those supplied on the book’s dataset site. To start, download the air_passengers.featherfile from https://github.com/lmassaron/datasets and place it in folder you created for this book. (In later chapters, you see how to download the .featherfiles directly from the book's dataset site, but performing the download now keeps things simple.) Here is an example of the code you use to load Air Passengers dataset as a dataframe.

import pyarrow.feather as featherread_df = feather.read_feather('air_passengers.feather')print(read_df)

The result is a 144-row dataframecontaining the number of passengers per month. Figure 4-9 shows typical output.

FIGURE 49The readdfobject contains the loaded dataset as a dataframe Конец - фото 51

FIGURE 4-9:The read_dfobject contains the loaded dataset as a dataframe.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning For Dummies»

Представляем Вашему вниманию похожие книги на «Machine Learning For Dummies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning For Dummies»

Обсуждение, отзывы о книге «Machine Learning For Dummies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x