11 Chapter 11Figure 11.1 Scatterplot of delivery volume x 1versus distance x 2, Example 11.3...Figure 11.2 Estimation data (×) and prediction data (•) using orthonormalized ...
12 Chapter 12Figure 12.1 Contours of the residual-sum-of-squares function: ( a ) linear model...Figure 12.2 Plot of reaction velocity versus substrate concentration for the p...Figure 12.3 ( a ) Plot of inverse velocity versus inverse concentration for the ...Figure 12.4 Plot of fitted nonlinear regression model, Example 12.5.Figure 12.5 Plot of residuals versus predicted values, Example 12.5.Figure 12.6 Normal probability plot of residuals, Example 12.5.Figure 12.7 A geometric view of linearization: ( a ) the first iteration; ( b ) ev...
13 Chapter 13Figure 13.1 Examples of the logistic response function: ( a ) E ( y ) = 1/(1 + e −6....Figure 13.2 A scatter diagram of the pneumoconiosis data from Table 13.1.Figure 13.3 The fitted logistic regression model for pneumoconiosis data from ...Figure 13.4 Normal probability plot of the deviance residuals.Figure 13.5 Plot of deviance residuals versus estimated probabilities.Figure 13.6 Logit, probit, and complimentary log-log functions for the linear ...Figure 13.7 Plots of the deviance residuals from the GLM for the worsted yarn ...
14 Chapter 14Figure 14.1 Plot of residuals versus time for the soft drink concentrate sales...Figure 14.2 Plot of residuals versus time for the soft drink concentrate sales...
15 Chapter 15Figure 15.1 A scatter diagram of a sample containing an influential observatio...Figure 15.2 The double-exponential distribution.Figure 15.3 Robust criterion functions.Figure 15.4 Robust influence functions: ( a ) least squares; ( b ) Huber’s t funct...Figure 15.5 Normal probability plots from least-squares fits: ( a ) least square...Figure 15.6 Normal probability plots from robust fits: ( a ) robust fit with all...Figure 15.7 Scatterplot of observed and actual temperatures, Example 15.2.Figure 15.8 Histogram of bootstrap
, Example 15.3.Figure 15.9 Histogram of bootstrap estimates
, Example 15.4.Figure 15.10 Histogram of bootstrap estimates
, Example 15.4.Figure 15.11 The tree partition analysis from JMP for the gasoline mileage dat...Figure 15.12 Artificial neural network with one hidden layer.Figure 15.13 The central composite design for k = 2 and
.Figure 15.14 The central composite design for k = 3 and
.Figure 15.15 The Box–Behnken design for k = 3 factors with one center point.Figure 15.16 Fraction of design space plot for the D -optimal and I -optimal des...
1 Cover
2 Table of Contents
3 Begin Reading
1 ii
2 iii
3 iv
4 xiii
5 xiv
6 xv
7 xvi
8 1
9 3
10 4
11 5
12 7
13 8
14 9
15 10
16 11
17 12
18 13
19 14
20 15
21 17
22 18
23 19
24 20
25 21
26 22
27 23
28 24
29 25
30 26
31 27
32 28
33 29
34 30
35 31
36 32
37 33
38 34
39 36
40 37
41 38
42 39
43 41
44 42
45 43
46 45
47 46
48 47
49 48
50 49
51 50
52 51
53 52
54 53
55 54
56 55
57 56
58 57
59 58
60 59
61 60
62 61
63 62
64 63
65 64
66 65
67 66
68 67
69 68
70 69
71 70
72 73
73 74
74 75
75 76
76 77
77 79
78 80
79 81
80 82
81 83
82 84
83 85
84 86
85 87
86 88
87 89
88 90
89 91
90 92
91 93
92 94
93 95
94 96
95 97
96 98
97 99
98 100
99 101
100 102
101 103
102 105
103 106
104 107
105 108
106 110
107 111
108 112
109 113
110 115
111 116
112 117
113 118
114 119
115 120
116 121
117 122
118 124
119 125
120 126
121 127
122 128
123 129
124 130
125 131
126 132
127 133
128 134
129 135
130 136
131 137
132 138
133 139
134 140
135 141
136 142
137 143
138 144
139 146
140 147
141 149
142 150
143 151
144 152
145 153
146 154
147 155
148 156
149 157
150 158
151 160
152 161
153 162
154 163
155 164
156 165
157 166
158 167
159 168
160 169
161 170
162 171
163 172
164 173
165 174
166 175
167 176
168 177
169 178
170 179
171 180
172 181
173 182
174 184
175 185
176 186
177 187
178 189
179 190
180 191
181 192
182 193
183 194
184 195
185 196
186 197
187 198
188 201
189 202
190 203
191 204
192 205
193 206
194 208
195 209
196 210
197 211
198 212
199 213
200 214
201 215
202 216
203 217
204 218
205 219
206 220
207 221
208 222
209 223
210 224
211 225
212 226
213 227
214 228
215 229
216 230
217 232
218 233
219 234
220 235
221 237
222 238
223 239
224 240
225 241
226 243
227 244
228 245
229 246
230 249
231 250
232 251
233 252
234 253
235 254
236 257
237 258
238 259
239 260
240 261
241 262
242 263
243 264
244 265
245 266
246 267
247 268
248 269
249 270
250 272
251 275
252 276
253 277
254 278
255 279
256 280
257 281
258 282
259 283
260 284
261 285
262 286
263 287
264 288
265 289
266 290
267 291
268 292
269 293
270 294
271 295
272 296
273 297
274 298
275 299
276 300
277 301
278 302
279 303
280 304
281 305
282 306
283 307
284 308
285 309
286 310
287 311
288 312
289 313
290 314
291 315
292 316
293 317
294 318
295 319
296 321
297 322
298 329
299 330
300 331
301 332
302 333
303 334
304 335
305 336
306 337
307 338
308 339
309 340
310 341
311 342
312 343
313 344
314 345
315 346
316 347
317 349
318 350
319 351
320 352
321 353
322 354
323 355
324 356
325 359
326 360
327 361
328 363
329 364
330 366
331 367
332 368
333 369
Читать дальше