Die Annahmen A1, A2, L1, L2und PIsind eine hinreichende Grundlage für die nächste Herausforderung, die von der Syllogistik zu bewältigen ist: syllogistisch zu beweisen, welche weiteren Syllogismen formal gültig sind. Dazu musste Aristoteles zunächst bestimmen, was ein guter syllogistischer Beweis eigentlich ist. Und genau für diese Bestimmung griff er erneut auf die Idee des analytisch-synthetischen Verfahrens zurück.
Die grundlegende Idee ist, dass ein syllogistischer Beweis eines nicht-perfekten Syllogismus R, S ⇒ T darin besteht, ihn in perfekte oder bereits bewiesene gültige Syllogismen zu zergliedern oder zu analysieren. Diese Analyse muss dann konkret darin bestehen, die Kluft zwischen den Prämissen R, S und der Konklusion T mit perfekten oder [22]bewiesenen Syllogismen anzufüllen, so dass wir von R und S allein aufgrund bekannter gültiger Syllogismen zu T gelangen. Das allgemeine Beweisschema der syllogistischen Analyse einer Deduktion D (R, S ⇒ T) ist also die Beweisformel
PR, S: D 1(R, S ⇒ X 1) – D 2(X 2, X 3⇒ X 4) – … – D n(X n–1, X n⇒ T): T
Dabei sind D 1, D 2, …, D nperfekte oder bewiesene Syllogismen. Der erste benutzte Syllogismus D 1beginnt mit den Prämissen des zu beweisenden Syllogismus D, und alle weiteren benutzten gültigen Syllogismen verwenden als Prämissen zwei syllogistische Sätze, die vor ihrem Einsatz in der Reihe R, S, X iauftauchen, bis T erreicht ist. Auf diese Weise wird in der Tat der zu beweisende Syllogismus D in die gültigen Syllogismen D 1– D nanalysiert und wieder zusammengesetzt.
Die ersten syllogistischen Deduktionen, die Aristoteles auf diese Weise beweist, sind nicht syllogistische Schlüsse im definierten formalen Sinn, sondern einfachere syllogistische Deduktionen mit nur einer Prämisse – die sogenannten Konversionsregeln (APr. I 2, 25a 14–25):
K1AeB ⇒ BeA; K2AiB ⇒ BiA; K3AaB ⇒ BiA.
Nach Aristoteles sind von den 188 nicht perfekten Syllogismen, die es insgesamt gibt, lediglich vierzehn syllogistisch gültig. Zwei typische Beweise lassen sich folgendermaßen notieren:
[23](a) Beweis von BaA, BeC ⇒ AeC (Camestres, zweite Figur): BaA, BeC: K1(BeC ⇒ CeB) – A2(CeB, BaA ⇒ CeA) – K1(CeA ⇒ AeC): AeC
(b) Beweis von AiB, CaB ⇒ AiC (Disamis, dritte Figur):AiB, CaB: K2(AiB ⇒ BiA) – A3(CaB, BiA ⇒ CiA) – K2(CiA ⇒ AiC): AiC
Diese Beweise erfüllen offenbar die Beweisformel P, d. h., sie sind genuine logische Analysen.
Zuweilen muss Aristoteles auf einen indirekten Beweis zurückgreifen: Die Prämissen des zu beweisenden Syllogismus werden positiv gesetzt; aber dann wird angenommen, die Konklusion des Syllogismus sei falsch, und diese Annahme wird dann wieder unter Einsatz gültiger Syllogismen zum Widerspruch geführt. Ein Beispiel ist
(c) Beweis von AaB, BiC ⇒ AiC (Darii, erste Figur):AaB, BiC, ¬ AiC: L1(¬ AiC ⇒ AeC) – K1(AeC ⇒ CeA) – A2(CeA, AaB ⇒ CeB) – K1(CeB ⇒ BeC) – L1(BeC ⇒ ¬ BiC), aber ¬ BiC steht im Widerspruch zur zweiten Prämisse BiC.
Mit (c) ist einer der vier perfekten Syllogismen ( A3) seinerseits bewiesen.
Wenn wir uns die Grundzüge der Syllogistik vor Augen führen, sehen wir sofort, dass die Syllogistik die zentrale Idee der Logik realisiert, wie sie bis heute anerkannt geblieben ist.
Dieser Idee zufolge ist die Logik eine spezielle Theorie des Argumentierens. Sie betrachtet Formen von [24]Argumenten, nicht konkrete Argumente. Es geht ihr nicht nur darum, wichtige Formen von Argumenten voneinander zu unterscheiden, sondern sie will auch beweisen, was gute und zwingende Formen von Argumenten sind. Insofern Argumente immer Folgerungen oder Schlüsse sind und man zwingende Schlüsse auch gültige Schlüsse nennt, kann man die Logik auch als normative Theorie gültiger Schlüsse bezeichnen. Die Auszeichnung der gültigen Schlüsse erfolgt allein anhand der Semantik der logischen Zeichen: Genau diejenigen Schlüsse sind logisch gültig, die allein aufgrund der Bedeutung der logischen Konstanten, die in ihnen vorkommen, gültig sind; und auch das Beweisverfahren für die Auszeichnung der logisch gültigen Schlüsse basiert auf der Semantik der logischen Zeichen – im Falle der Syllogistik also, wie Aristoteles ausdrücklich bemerkt, letztlich allein auf der Bedeutung der beiden syllogistischen Ausdrücke »x kommt allen y zu« und »x kommt keinem y zu«.
Die Syllogistik setzt Aristoteles in seiner Theorie des Wissens und der Wissenschaft – der »wissenschaftlichen Analytik« – voraus. In einem seiner bedeutsamsten Dialoge, dem Theätet , hat Platon das Wissen als wahre gerechtfertigte Meinung bestimmt (Plat. Theät. 201c–d, vgl. Men. 98a) – eine Definition, die bis heute einflussreich geblieben ist. Aber erst Aristoteles entwickelt Platons Epistemologie weiter zu einer ausgefeilten Wissenschaftstheorie, die er wie die Syllogistik als Analytik kennzeichnet.6 Die von Platon eingeforderte Rechtfertigungsbedingung für Wissen muss nach Aristoteles genauer darin bestehen, dass vorgelegte Thesen für wahr gehalten und mit Verweis auf weitere Fakten erklärt werden können. Eine solche Erklärung nennt er »Demonstration« (APo. I 2).
[25]Zu Beginn der Ersten Analytik , in der unter anderem die Syllogistik präsentiert wird, kündigt er eine Untersuchung der Demonstration an. Eine Demonstration ist als Erklärung mehr als ein gültiger Syllogismus. Aristoteles verwendet den Ausdruck »Syllogismus« in zwei unterschiedlich starken Bedeutungen: zum einen im Sinne einer syllogistisch gültigen Deduktion und zum anderen im Sinne einer syllogistisch gültigen Deduktion mit wahren Prämissen. Den Syllogismus im zweiten, stärkeren Sinne können wir »Beweis« nennen. Eine Demonstration schließlich ist eine wissenschaftliche Erklärung – ein Syllogismus im stärkeren Sinne, dessen wahre Prämissen zusätzlich auf erklärende Ursachen verweisen. Die Demonstration ist daher das entscheidende Thema der Wissenschaftstheorie, die in der Zweiten Analytik entwickelt wird. Aristoteles deutet folglich mit seiner Ankündigung zu Beginn der Ersten Analytik an, dass er Erste und Zweite Analytik , also Syllogistik und Wissenschaftstheorie, als theoretische Einheit betrachtet. In der Tat ist jede Demonstration ein gültiger Syllogismus, während das Umgekehrte nicht gilt.
Nicht nur die Syllogistik, auch die Theorie der wissenschaftlichen Demonstration ist mithin eine Analytik. Die wissenschaftliche Analyse bezieht sich aber nicht auf ganze Syllogismen, sondern auf jeweils einzelne syllogistische Sätze, die universelle Fakten beschreiben – also vornehmlich Fakten, die wir mit generellen Sätzen der Form »Alle Bs sind A« (AaB) bzw. »Kein B ist A« (AeB) beschreiben. Die wissenschaftliche Analyse dieser universellen Sätze und der entsprechenden universellen Fakten bringt die Syllogistik zum Einsatz: Einen als wahr geltenden universellen Satz AaB oder AeB wissenschaftlich zu analysieren heißt, [26]zwei weitere als wahr geltende Sätze zu finden, die Prämissen für einen syllogistisch gültigen Schluss auf den gegebenen universellen Satz sind. Und die Syllogistik gibt uns gerade die Form der gesuchten Prämissen an die Hand (APo. I 32). Nach A1könnten die gesuchten Prämissen für AaB beispielsweise die Formen AaC und CaB haben, und nach A2könnten die Prämissen für AeB die Formen AeC und CaB haben (in der Tat behauptet Aristoteles, dass die Wissenschaften primär mit Demonstrationen in der ersten syllogistischen Figur operieren). Diese Analyse und Synthese können wir folgendermaßen notieren (der Buchstabe in Klammern zeigt die syllogistische Relation zwischen A und B an):
Читать дальше