Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

At the disc itself, because the bound vorticity induces no rotation and the wake cylinder induces no rotation within the wake cylinder either, it is only the root vortex that does induce rotation, and that value is half the total induced generally in the wake. Hence the root vortex induced rotation that is only half the rotational velocity is used to determine the flow angle at the disc. At a radial distance equal to half the disc radius, as an example, the axial variation of the three contributions is shown in Figure 3.10.

The rotational flow is confined to the wake, that is, inside the cylinder, and tends asymptotically to 2a′ Ω well downstream of the rotor. There is no rotational flow anywhere outside the wake, neither upstream of the disc nor at radial distances outside the wake cylinder. Because of this there is no first order transverse effect of the proximity of a ground plane on the downstream convection of the vortex wake of a wind turbine as there is on the trailing vortices of a fixed wing aircraft. The rotational flow within the wake cylinder decreases radially from the axis to the wake boundary but is not zero at the outer edge of the wake, therefore there is an abrupt fall of rotational velocity across this cylindrical wake surface vortex sheet.

And because of this profile of rotation the cylindrical vortex sheet itself, therefore, rotates with the mean of the inside and outside angular velocities, картинка 198, and so the rotation of the flow relative to the disc is (1 + a ′)Ω. The helix angle ϕ ttakes this additional rotation into account, as determined from Eq. (3.30).

Figure 310 The axial variation of tangential velocity in the vicinity of an - фото 199

Figure 3.10 The axial variation of tangential velocity in the vicinity of an actuator disc at 50% radius, λ 6 Figure 311 The axial variation of tangential velocity in the - фото 200, λ = 6.

Figure 311 The axial variation of tangential velocity in the vicinity of an - фото 201

Figure 3.11 The axial variation of tangential velocity in the vicinity of an actuator disc at 101% radius, картинка 202, λ = 6.

The contributions of the three vorticity sources to the rotational flow at a radius of 101% of the disc radius are shown in Figure 3.11: the total rotational flow is zero at all axial positions, but the individual components are not zero.

3.4.8 Axial thrust

The axial thrust T on the disc can be determined using the Kutta–Joukowski theorem:

Wind Energy Handbook - изображение 203

where V is the tangential velocity component at the disc. If V = r Ω (1 + a′) , then, using Eq. (3.32)ignoring any additional inflow at the disc caused by the centrifugal pressure reduction due to wake swirl discussed at the end of Section 3.3.2:

(3.41) Wind Energy Handbook - изображение 204

Integration of Eq. (3.41)over the entire disc gives the thrust coefficient as

(3.42) Wind Energy Handbook - изображение 205

That is, the same as for the simple momentum theory and so in balance with the rate of change of axial momentum. Note that if the induced tangential velocity ar Ω is included in V as it is in blade‐element/momentum (BEM) theory and the blade circulation is constant from the axis to the tip, there is a singularity in the axial force on the blade section at the axis as there is also at the outer tip. This points to the failure of a simple constant strength bound vortex model at the blade ends as discussed in the section on tip‐loss corrections.

3.4.9 Radial flow and the general flow field

Although the vortex cylinder model has been simplified by not allowing the cylinder to expand, the vortex theory nevertheless predicts flow expansion. A radial velocity is predicted by this theory as in Figure 3.12, which shows a longitudinal section of the flow field through the rotor disc. The theory is in fact a ‘small disturbance theory’ in which the singularities in the flow field (the vortex sheets in the present case) are placed on the surfaces they would lie on in the limit of vanishingly small disturbance by the rotor.

The radial velocity field that is predicted is largest on any given streamline at the actuator disc rising from zero at the axis to a weak logarithmic infinite value at the edge of the disc, which is the path of the blade tips. The infinite radial velocity at the edge is associated with non‐zero disc loading right up to the edge. This is not realistic, being a consequence of assuming the rotor to consist of an infinite number of blades whose effect is ‘smeared’ uniformly over the disc, but being a weak singularity does not significantly affect the rest of the flow field. In applying the more detailed BEM theory the tip region is corrected by a tip correction factor to recognise that in reality the blade loading must fall to zero at the blade tips.

An alternative method of deriving the velocity field of the actuator disc has been given more recently by Conway (1998). This method takes the approach of building up the flow field from a sum of Bessel functions that are fundamental solutions of a cylindrical potential flow. The method has advantages if it is required to calculate the velocity at general points throughout the flow field both within the bounding streamtube that forms the boundary of the wake and outside it. For the streamwise velocity U 1in the simple uniform actuator disc flow:

where r and x here are radial and streamwise coordinates nondimensionalised by - фото 206 where r and x here are radial and streamwise coordinates nondimensionalised by - фото 207

where r and x here are radial and streamwise coordinates non‐dimensionalised by the tip radius, a 1is the wake induction factor, and J 0and J 1are Bessel functions of the first kind.

Figure 312 Flow field through an actuator disc for a 13 This flow field - фото 208

Figure 3.12 Flow field through an actuator disc for a = 1/3 .

This flow field may also be computed by solving the axisymmetric flow equations numerically either as inviscid Euler equations or as the full Navier–Stokes equations to compute the effects of viscous (or turbulent) mixing in the wake of the rotor (see section on computational fluid dynamics [CFD] in Chapter 4). Both stream function – vorticity and primitive variable (velocity – pressure) formulations have been used to do this; see, e.g. Mikkelsen (2003), Soerensen et al. (1998), Madsen et al. (2010).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x