Michael Graham - Wind Energy Handbook

Здесь есть возможность читать онлайн «Michael Graham - Wind Energy Handbook» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wind Energy Handbook: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wind Energy Handbook»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover this fully updated and authoritative reference to wind energy technology written by leading academic and industry professionals  The newly revised Third Edition of the 
 delivers a fully updated treatment of key developments in wind technology since the publication of the book’s Second Edition in 2011. The criticality of wakes within wind farms is addressed by the addition of an entirely new chapter on wake effects, including ‘engineering’ wake models and wake control. Offshore, attention is focused for the first time on the design of floating support structures, and the new ‘PISA’ method for monopile geotechnical design is introduced. 
The coverage of blade design has been completely rewritten, with an expanded description of laminate fatigue properties and new sections on manufacturing methods, blade testing, leading-edge erosion and bend-twist coupling. These are complemented by new sections on blade add-ons and noise in the aerodynamics chapters, which now also include a description of the Leishman-Beddoes dynamic stall model and an extended introduction to Computational Fluid Dynamics analysis. 
The importance of the environmental impact of wind farms both on- and offshore is recognised by extended coverage, which encompasses the requirements of the Grid Codes to ensure wind energy plays its full role in the power system. The conceptual design chapter has been extended to include a number of novel concepts, including low induction rotors, multiple rotor structures, superconducting generators and magnetic gearboxes.
References and further reading resources are included throughout the book and have been updated to cover the latest literature. Importantly, the core subjects constituting the essential background to wind turbine and wind farm design are covered, as in previous editions. These include: 
The nature of the wind resource, including geographical variation, synoptic and diurnal variations and turbulence characteristics The aerodynamics of horizontal axis wind turbines, including the actuator disc concept, rotor disc theory, the vortex cylinder model of the actuator disc and the Blade-Element/Momentum theory Design loads for horizontal axis wind turbines, including the prescriptions of international standards Alternative machine architectures The design of key components Wind turbine controller design for fixed and variable speed machines The integration of wind farms into the electrical power system Wind farm design, siting constraints and the assessment of environmental impact Perfect for engineers and scientists learning about wind turbine technology, the 
 will also earn a place in the libraries of graduate students taking courses on wind turbines and wind energy, as well as industry professionals whose work requires a deep understanding of wind energy technology.

Wind Energy Handbook — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wind Energy Handbook», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.37) where n is frequency S 12 n is the crossspectrum of variations at the two - фото 88

where n is frequency, S 12( n ) is the cross‐spectrum of variations at the two points separated by Δ r , and S 11( n ) and S 22( n ) are the spectra of variations at each of the points (usually these can be taken as equal).

Starting from von Karman spectral equations, and assuming Taylor's frozen turbulence hypothesis, an analytical expression for the coherence of wind speed fluctuations can be derived. Accordingly for the longitudinal component at points separated by a distance Δ r perpendicular to the wind direction, the coherence C u ( Δ r,n) is:

(2.38) Here A j x x j K j x where K is a fractional order modified Bessel - фото 89

Here A j (x) = x j K j (x) where K is a fractional order modified Bessel function, and

(2.39) with c 1 L uis a local length scale that can be defined as 240 where Δ - фото 90

with c = 1. L uis a local length scale that can be defined as

(2.40) where Δ y and Δ z are the lateral and vertical components of the separation Δ r - фото 91

where Δ y and Δ z are the lateral and vertical components of the separation Δ r , and y L uand z L uare the lateral and vertical length scales for the longitudinal component of turbulence. Normally f u( n ) = 1, but ESDU (1975) suggests a modification at low frequencies where the wind becomes more anisotropic, with f u( n ) = MIN (1.0, 0.04 n −2/3).

The (1999) edition 2 standard allows only an isotropic turbulence model to be used if the von Karman spectrum is used, in which x L u= 2 y L u= 2 z L u, and then L u= x L u, and f u( n ) = 1.

The modified von Karman model described in Eq. (2.26)also uses f u( n ) = 1, but the factor c in Eq. (2.39)is modified instead (ESDU 1985).

For the lateral and vertical components, the corresponding equations are as follows. The analytical derivation for the coherence, based as before on the von Karman spectrum and Taylor's hypothesis, is

(2.41) for i u or v where η iis calculated as in Eq 239but with L ureplaced by - фото 92

for i = u or v , where η iis calculated as in Eq. (2.39)but with L ureplaced by L vor L w, respectively, and with c = 1. Also

(2.42) Wind Energy Handbook - изображение 93

and L vand L ware given by expressions analogous to Eq. (2.40).

The expressions for spatial coherence in Eqs. (2.38)and (2.41)are derived theoretically from the von Karman spectrum, although there are empirical factors in some of the expressions for length scales, for example. If a Kaimal rather than a von Karman spectrum is used as the starting point, there are no such relatively straightforward analytical expressions for the coherence functions. In this case a simpler, and purely empirical, exponential model of coherence is often used. The (1999) edition 2 standard, for example, gives the following expression for the coherence of the longitudinal component of turbulence:

(2.43) where H 88 and L c L u This can also be approximated by 244 with η - фото 94

where H = 8.8 and L c= L u. This can also be approximated by

(2.44) with η uas in Eq 239 The standard also states that this may also be used - фото 95

with η uas in Eq. (2.39).

The standard also states that this may also be used with the von Karman model, as an approximation to Eq. (2.38). The standard does not specify the coherence of the other two components to be used in conjunction with the Kaimal model, so the following expression is often used:

(2.45) In the later editions IEC 2005 and IEC 2019 a slightly modified form is - фото 96

In the later editions, IEC (2005) and IEC (2019), a slightly modified form is specified, in which H = 12 and L c= L 1u.

The three turbulence components are usually assumed to be independent of one another. This is a reasonable assumption, although it ignores the effect of Reynolds stresses that result in a small correlation between the longitudinal and vertical components near to the ground, an effect that is captured by the Mann model described in Section 2.6.8.

Clearly there are significant discrepancies between the various recommended spectra and coherence functions. Also these wind models are applicable to flat sites, and there is only limited understanding of the way in which turbulence characteristics change over hills and in complex terrain. Given the important effect of turbulence characteristics on wind turbine loading and performance, this is clearly an area in which there is scope for further research.

2.6.8 The Mann model of turbulence

Alongside the Kaimal model, editions 3 and 4 of the IEC standard (IEC 2005, 2019) give the option to use a rather different form of turbulence model developed by Mann (1994, 1998). The other models described above make use of a one‐dimensional fast Fourier transform (FFT) to generate time histories from spectra, applied to each turbulence component independently. In contrast, the Mann model is based on a three‐dimensional spectrum tensor representation of the turbulence, and one three‐dimensional FFT is then used to generate all three components of turbulence simultaneously. The three‐dimensional spectrum tensor is derived from rapid distortion theory, in which isotropic turbulence described by the von Karman spectrum is distorted by a uniform mean vertical velocity shear. This means that the three turbulence components are no longer independent, as energy is transferred between the longitudinal and vertical components by distortion of the eddies in the flow, resulting in a realistic representation of the correlation between the longitudinal and vertical components described by the Reynolds stress. The spectral density for any three‐dimensional wavenumber vector is derived, and all three components of turbulence are then generated simultaneously by summing a set of such wavenumber vectors, each with the appropriate amplitude and a random phase.

This is in many ways a rather elegant approach, but in practice there are some computational limitations that can make it difficult to use. The summation requires a three‐dimensional FFT to achieve reasonable computation time. The number of points in the longitudinal, lateral, and vertical directions must be a power of two for efficient FFT computation. In the longitudinal direction, the number of points is determined by the length of time history required and the maximum frequency of interest and is therefore typically at least 1024. The maximum wavelength used is the length of the turbulence history to be generated (i.e. the mean wind speed multiplied by duration of the required time series), and the minimum wavelength is twice the longitudinal spacing of points (which is the mean wind speed divided by the maximum frequency of interest). In the lateral and vertical directions, a much smaller number of points must be used, perhaps as low as 32, depending on available computer memory. The maximum wavelength must be significantly greater than the rotor diameter, because the solution is spatially periodic, with period equal to the maximum wavelength in each direction. The number of FFT points then determines the minimum wavelength in these directions. With a realistic number of points, the resulting turbulence spectra are deficient at the high frequency end (Veldkamp 2006). Mann (1998) suggests that this may be realistic, because it represents averaging of the turbulence over finite volumes of space, which is appropriate for practical engineering applications. However, a practical simulation tool will perform all necessary spatial averaging in any case, and so the high frequency variations are really lost. Mann (1998) does suggest a remedy for this, but in practice it is extremely intensive computationally.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wind Energy Handbook»

Представляем Вашему вниманию похожие книги на «Wind Energy Handbook» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wind Energy Handbook»

Обсуждение, отзывы о книге «Wind Energy Handbook» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x