Machine Learning for Healthcare Applications

Здесь есть возможность читать онлайн «Machine Learning for Healthcare Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning for Healthcare Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning for Healthcare Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment.
Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning.
This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Machine Learning for Healthcare Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning for Healthcare Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.5 Experimental Results

We have developed two models in this chapter based on the two popular machine learning algorithms which are Decision tree and Random forest and tested both the models based on the synthetic dataset. We have developed a web-based application to demonstrate the models proposed in this chapter. A few screenshots of the application shown in Figure 2.2.

2.5.1 Performance Metrics

To analyze the effectiveness and the performance of the model proposed in this chapter, we used the standard performance metrics [13] and [3] accuracy, precision, recall, and F1-score.

2.5.1.1 Accuracy

The accuracy of the model is calculated using the equation given below.

Table 22shows the accuracy of the model for the decision tree proposed in this - фото 6

Table 2.2shows the accuracy of the model for the decision tree proposed in this chapter.

Figure 2.3shows the accuracy comparison between the two models which are proposed in this chapter and it is observed the model-II gives more accuracy than the model-I.

Figure 22 Screenshots of the web application Table 22 Accuracy of the model - фото 7

Figure 2.2 Screenshots of the web application.

Table 2.2 Accuracy of the model

Health status Model 1 Model 2
Accuracy: Phase-I Accuracy: Phase-II Accuracy: Phase-I Accuracy: Phase-II
Sleep 90.54 93.64 91.54 94.64
Smoke 92.21 94.01 94.21 96.01
Drink 94.63 95.99 96.63 97.99
Screen 93.11 94.76 94.11 95.76
Calories 94.00 97.83 95.00 98.83
Figure 23 Accuracy ModelI vs ModelII 2512 Precision The precision - фото 8

Figure 2.3 Accuracy: Model-I vs Model-II.

2.5.1.2 Precision

The precision of the model is calculated using the equation given below.

Figure 24shows the precision comparison between the two models which are - фото 9

Figure 2.4shows the precision comparison between the two models which are proposed in this chapter and it is observed the model-II gives more accuracy than the model-I. Table 2.3shows the Precision comparison between the model-1 and model-2.

2.5.1.3 Recall

The recall of the model is calculated using the equation given below.

Machine Learning for Healthcare Applications - изображение 10 Figure 24 Precision ModelI vs ModelII Table 23 Precision of the model - фото 11

Figure 2.4 Precision: Model-I vs Model-II.

Table 2.3 Precision of the model.

Health status Model 1 Model 2
Precision:Phase-I Precision:Phase-II Precision:Phase-I Precision:Phase-II
Sleep 95.5555556 97.826087 95.6043956 97.8723404
Smoke 95.6989247 95.8333333 95.8333333 97.8947368
Drink 95.5555556 97.8723404 97.8947368 98.9473684
Screen 96.7032967 97.8494624 97.826087 96.8421053
Calories 97.3494624 97.9381443 97.8494624 98.9690722

Table 2.4 Recall of the model.

Health status Model 1 Model 2
Recall:Phase-I Recall:Phase-II Recall:Phase-I Recall:Phase-II
Sleep 93.4782609 94.7368421 94.5652174 95.8333333
Smoke 95.6989247 97.8723404 97.8723404 97.8947368
Drink 93.4782609 96.8421053 97.8947368 98.9473684
Screen 95.6521739 95.7894737 95.7446809 97.8723404
Calories 95.78941737 98.9583333 96.8085106 98.9690722
Figure 25 Recall ModelI vs ModelII Table 24shows the Recall comparison - фото 12

Figure 2.5 Recall: Model-I vs Model-II.

Table 2.4shows the Recall comparison between the model-1 and model-2.

Figure 2.5shows the Recall comparison between the two models which are proposed in this chapter and it is observed the model-II gives more accuracy than the model-I.

2.5.1.4 F1-Score

The F1-score is the harmonic mean of precision and recall. Below equation used to calculate the F1-score.

Figure 26shows the F1score comparison between the two models which are - фото 13

Figure 2.6shows the F1-score comparison between the two models which are proposed in this chapter and it is observed the model-II gives more accuracy than the model-I. Table 2.5shows the F1-Score comparison between the model-1 and model-2.

Table 2.5 F1-score of the model.

Health status Model 1 Model 2
F1-score:Phase-I F1-score:Phase-II F1-score:Phase-I F1-score:Phase-II
Sleep 94.50549 96.25668 95.08197 96.84211
Smoke 95.69892 96.84211 96.84211 97.89474
Drink 94.50549 97.3545 97.89474 98.94737
Screen 96.17486 96.80851 96.77419 97.3545
Calories 96.80851 98.4456 97.3262 98.96907
Figure 26 Recall ModelI vs ModelII 26 Conclusion In this chapter we - фото 14

Figure 2.6 Recall: Model-I vs Model-II.

2.6 Conclusion

In this chapter, we have proposed an architecture based on machine learning algorithms. Basically, we focus on a challenging problem of predicting the overall health status of an individual based on their daily life activities and measures. The proposed system predicts the overall health status of a person and future diseases using machine learning techniques. To demonstrate the proposed model, we have created a web-based application. The proposed model helps the user to understand their health status by submitting their details. For training and testing we used the synthetic data, in the future we need to test the proposed model using the real data by collecting from the users. In this work, we attempted a general healthcare problem and a lot more has to be done in the future. The future work is to predict the diseases based on the overall health status estimation using the models proposed in this chapter.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning for Healthcare Applications»

Представляем Вашему вниманию похожие книги на «Machine Learning for Healthcare Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning for Healthcare Applications»

Обсуждение, отзывы о книге «Machine Learning for Healthcare Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x