Cloud and IoT-Based Vehicular Ad Hoc Networks

Здесь есть возможность читать онлайн «Cloud and IoT-Based Vehicular Ad Hoc Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Cloud and IoT-Based Vehicular Ad Hoc Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cloud and IoT-Based Vehicular Ad Hoc Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Optimizing the traffic management operations is a big challenge due to massive global increase in vehicles numbers, traffic congestion and road accidents.
This book describes the state-of-the-art of the recent developments of Internet of Things (IoT) and cloud computing-based concepts have been introduced to improve Vehicular Ad-Hoc Networks (VANET) with advanced cellular networks such as 5G networks and vehicular cloud concepts. 5G cellular networks provide consistent, faster and more reliable connections within the vehicular mobile nodes. By 2030, 5G networks will deliver the virtual reality content in VANET which will support vehicle navigation with real time communications capabilities, improving road safety and enhance passenger comfort.

Cloud and IoT-Based Vehicular Ad Hoc Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Cloud and IoT-Based Vehicular Ad Hoc Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 113Illustrative example ofthe proposed algorithm 41 Figure 114The - фото 16

Figure 1.13Illustrative example ofthe proposed algorithm [41].

Figure 114The algorithm for the transmission 41 Figure 115An - фото 17

Figure 1.14The algorithm for the transmission [41].

Figure 115An illustrative example of the working of the transmission algorithm - фото 18

Figure 1.15An illustrative example of the working of the transmission algorithm [41].

1.6 Conclusion & Future Work

In today’s era, almost everything is connected through the Internet. IoT devices network is a prominent example of it, and it leads to the requirement of faster communication network such as 5G. With faster communication, we can yield full capabilities of IoT devices in the various application domains such as healthcare, I-IoT, agriculture, etc. Presently some issues exist such as transmission efficiency and cell power utilization with limited solutions for these issues. In future more efficient algorithms, protocols and viable solution are required and will be developed to get the maximum potential of IoT devices with the 5G network.

References

1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., Internet of Things (IoT): A vision, architectural elements, and future directions.

2. Ermolov, V. et al ., Significance of Nanotechnology for future wireless devices and Communications. The 18th Annual IEEE International Symposium on PIMRC’07 .

3. Salahuddin, M. A., Al-Fuqaha, A., & Guizani, M., Exploiting context severity to achieve opportunistic service differentiation in vehicular Ad Hoc networks. IEEE transactions on vehicular technology , 63, 6, 2901–2915, 2013.

4. Yu, Z., Liang, Y., Xu, B. et al ., Towards a smart campus with mobile social networking, in: Proceedings of the 4th IEEE Int’l Conference on Cyber, Physical and Social Computing (CPSCom) , IEEE, Dalian, China, 2011.

5. Pearl, D. Journal of Higher Education Outreach and Engagement, 17, 3, 1–157, 2013.

6. Minoli, D., and Occhiogrosso, B., Practical aspects for the integration of 5G networks and IoT applications in smart cities environments. Wireless Communications and Mobile Computing , 2019, 2019.

7. Painter, S., Fournier, J., Grape, C., Grummon, P., Morelli, J., Whitmer, S., & Cevetello, J., Research on learning space design: Present state, future directions. Society of College and University Planning, 2013.

8. Kyriazis, D., Varvarigou, T., White, D. et al ., Sustainable smart city IoT applications: heat and electricity management & ecoconscious cruise control for public transportation, in: Proceedings of the IEEE 14th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM) , IEEE, Madrid, Spain, 2013.

9. Minoli, D., What is the internet of things?. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications, 1–27, 2013.

10. Grodi, R., Rawat, D.B., Rios-Gutierrez, F., Smart parking: Parking occupancy monitoring and visualization system for 28 Wireless Communications and Mobile Computing smart cities, in: Proceedings of the Southeast Con , IEEE, Norfolk, VA, USA, 2016.

11. Soudani, A., Marrón, P., & Shih, C. Y. Wireless Ad Hoc Sensor Networks.

12. Shuja, J., Gani, A., Shamshirband, S., Ahmad, R. W., & Bilal, K., Sustainable cloud data centers: A survey of enabling techniques and technologies. Renewable and Sustainable Energy Reviews , 62, 195–214, 2016.

13. Liu, X. F., Zhan, Z. H., Deng, J. D., Li, Y., Gu, T., & Zhang, J. An energy efficient ant colony system for virtual machine placement in cloud computing. IEEE transactions on evolutionary computation , 22, 1, 113–128, 2016.

14. Juels, A., RFID security and privacy: A research survey. IEEE journal on selected areas in communications, 24, 2, 381–394, 2006.

15. Ly, F., Carrier Network Virtualization 2016: The Future of 5G and System Integrators. Radisy, 2016.

16. Mahmoud, M. S., & Mohamad, A. A., A study of efficient power consumption wireless communication techniques/modules for internet of things (IoT) applications, 2016.

17. Lee, J.-S., Su, Y.-W., Shen, C.-C., A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON) , Taipei, 5–8 November 2007, pp. 46–51, http://dx.doi.org/10.1109/iecon.2007.4460126.

18. Tozlu, S., Senel, M., Mao, W., Keshavarzain, A., Wi-Fi Enabled Sensors for Internet of Things: A Practical Approach. IEEE Commun. Mag ., 50, 134–143, http://dx.doi.org/10.1109/MCOM.2012.6211498, 2012.

19. Burchfield, T.R., Venkatesan, S., Weiner, D., Maximizing Throughput in ZigBee Wireless Networks through Analysis, Simulations and Implementations. Proceedings of the International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks , Santa Fe, 18–20, 18–20 June 2007.

20. Alliance, L., LPWA technologies unlock new IoT market potential. White Paper. LoRa, 2015.

21. Nguyen, D. D., Nguyen, H. X., & White, L. B., Reinforcement learning with network-assisted feedback for heterogeneous RAT selection. IEEE Transactions on Wireless Communications , 16, 9, 6062–6076, 2017.

22. Le, Q. V., Jaitly, N., & Hinton, G. E., A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

23. Alnwaimi, G., Vahid, S., & Moessner, K., Dynamic heterogeneous learning games for opportunistic access in LTE-based macro/femtocell deployments. IEEE Transactions on Wireless Communications , 14, 4, 2294–2308, 2014.

24. Wang, L. C., & Cheng, S. H. Data-driven resource management for ultra-dense small cells: An affinity propagation clustering approach. IEEE Transactions on Network Science and Engineering , 6, 3, 267–279, 2018.

25. Parwez, M. S., Rawat, D. B., & Garuba, M., Big data analytics for user-activity analysis and user-anomaly detection in mobile wireless network. IEEE Transactions on Industrial Informatics , 13, 4, 2058–2065, 2017.

26. Li, R., Zhao, Z., Zhou, X., Ding, G., Chen, Y., Wang, Z., & Zhang, H., Intelligent 5G: When cellular networks meet artificial intelligence. IEEE Wireless communications , 24, 5, 175–183, 2017.

27. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K. C., & Hanzo, L., Machine learning paradigms for next-generation wireless networks. IEEE Wireless Communications , 24, 2, 98–105, 2016.

28. Han, S. Y., Abu-Ghazaleh, N. B., & Lee, D. Efficient and consistent path loss model for mobile network simulation. IEEE/ACM Transactions on Networking , 24, 3, 1774–1786, 2015.

29. Liu, J., Deng, R., Zhou, S., & Niu, Z., Seeing the unobservable: Channel learning for wireless communication networks. In 2015 IEEE Global Communications Conference (GLOBECOM) , (pp. 1–6), IEEE, 2015.

30. Minoli, D., & Occhiogrosso, B., Practical aspects for the integration of 5G networks and IoT applications in smart cities environments. Wireless Communications and Mobile Computing , 2019.

31. Osseiran, A., Braun, V., Hidekazu, T., Marsch, P., Schotten, H., Tullberg, H., ... & Schellman, M., The foundation of the mobile and wireless communications system for 2020 and beyond: Challenges, enablers and technology solutions. In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring) , (pp. 1–5), IEEE, 2013.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Cloud and IoT-Based Vehicular Ad Hoc Networks»

Представляем Вашему вниманию похожие книги на «Cloud and IoT-Based Vehicular Ad Hoc Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Cloud and IoT-Based Vehicular Ad Hoc Networks»

Обсуждение, отзывы о книге «Cloud and IoT-Based Vehicular Ad Hoc Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x